## Significant effects of second KK particles on LKP dark matter physics

Mitsuru Kakizaki (Bonn Univ. & ICRR, Univ. of Tokyo)

12 May, 2006 @ Bielefeld Univ.

**Collaborated with** 

- Shigeki Matsumoto (KEK)
- Yoshio Sato (Saitama U.)
- Masato Senami (ICRR)

**Refs:** 

- PRD 71 (2005) 123522 [hep-ph/0502059]
- NPB 735 (2006) 84 [hep-ph/0508283]



**Observations of** 

- cosmic microwave background
- structure of the universe
- etc.

#### Non-baryonic cold dark matter



[http://map.gsfc.nasa.gov]

- What is the constituent of dark matter?
  - Weakly interacting massive particles are good candidates:
    - Lightest supersymmetric particle (LSP) in supersymmetric (SUSY) models
    - Lightest Kaluza-Klein particle (LKP) in universal extra dimension (UED) models



#### • etc.

12 May, 2006



- In universal extra dimension (UED) models, Kaluza-Klein (KK) dark matter physics is drastically affected by 2<sup>nd</sup> KK particles
- Reevaluation of relic density of KK dark matter including coannihilation and resonance effects
   Dark matter particle mass consistent with WMAP increases
  - **1**. Motivation

Outline

- 2. Universal extra dimension (UED) models
- **3.** Relic abundance of KK dark matter
- 4. Resonance in KK dark matter annihilation
- **5.** Including various coannihilation processes

### 6. Summary 12 May, 2006

## **2. Universal extra dimension (UED) models**

[Appelquist, Cheng, Dobrescu, PRD64 (2001) 035002]

Idea: All SM particles propagate in flat compact spatial extra dimensions

• **Dispersion relation:** 
$$E^2 = \vec{p}^2 + (p_5^2 + M^2)$$

Momentum along the extra dimension = Mass in four-dimensional viewpoint

In case of  $S^1$  compactification with radius R,  $p_5 = n/R$   $(n = 0, 1, 2, \cdots)$  is quantized

## $\bullet$ Momentum conservation in the extra dimension $\implies$ Conservation of KK number n in each vertex

12 May, 2006





- In order to obtain chiral fermions at zeroth KK level, the extra dimension is compactified on an  $S^1/Z_2$  orbifold
- Conservation of KK parity [+ (–) for even (odd) n ]

**Minimal UED model** 

The lightest KK particle (LKP) is stable c.f. R-parity and LSP

The LKP is a good candidate for dark matter

#### Only two new parameters in the MUED model:

R : Size of extra dimension  $\Lambda$  : Scale at which boundary terms vanish

#### Constraints from electroweak measurements are weak:

 $R^{-1} > 250 \text{ GeV}$  [Appelquist, Cheng, Dobrescu (2001); Appelquist, Yee, PRD67 (2003)]  $R^{-1} > 700 \text{ GeV}$  : Inclusion of 2-loop SM contributions and LEP2 data [Flacke, Hooper, March-Russel, PRD73 (2006)] 12 May, 2006 Mitsuru Kakizaki

 $m_Z$ 

More

theory

fundamental

### **Mass spectra of KK states**



## 3. Relic abundance of KK dark matter

#### Generic picture

- Dark matter particles were in thermal equilibrium in the early universe
- After the annihilation rate dropped below the expansion rate, the number density per comoving volume is almost fixed



**Co-moving number density** 

Increasing  $\langle \sigma v \rangle$ 

40

50

30

x = m/T

Decoupling

20

tmale

10



- Dark matter particles were non-relativistic when they decoupled

   → (Incident energy of two LKPs) 
   → (Masses of 2<sup>nd</sup> KK modes)
- LKPs annihilate through s-channel 2<sup>nd</sup> KK Higgs boson exchange at loop level



The annihilation cross section is enhanced

Mass splitting in MUED:



12 May, 2006

### Thermal average of annihilation cross section for LKP



#### Smaller $\delta$

The averaged cross section becomes maximum at later time The maximum value is larger

## Relic abundance of the LKP (without coannihilation)



# Coannihilation with 1st KK singlet leptons $E^{(1)}$

#### • We can systematically survey 2nd KK–resonance effects

- $h^{(2)}$ -resonance effect in  $\gamma^{(1)}\gamma^{(1)} \to SM$  particles : sizable
- $E^{(2)}$ -resonance effect in  $\gamma^{(1)}E^{(1)} \to SM$  particles
- : relatively small
- No 2nd KK–resonance in  $E^{(1)}\bar{E}^{(1)} \to SM$  particles

#### • Evolution of dark matter abundance Y = n/s [Three flavors: $E_i^{(1)}$ , $i = e, \mu, \tau$ ]



#### Allowed mass region $0.104 \le \Omega h^2 \le 0.116$ $0.098 \le \Omega h^2 \le 0.122$



## **5. Including various** coannihilation processes

[Burnell, Kribs, PRD73(2006); Kong, Matchev, JHEP0601(2006)]



## Efficient coannihilation processes through strong Higgs coupling

- Larger Higgs mass

   (larger Higgs self–coupling)
  - Mass degeneracy between 1<sup>st</sup> KK Higgs bosons and the LKP in MUED
  - Larger annihilation cross sections for the 1<sup>st</sup> KK Higgs bosons
    - Coannihilation effect with 1<sup>st</sup> KK Higgs bosons efficiently decrease the LKP abundance

Dependence of the LKP relic abundance on the Higgs mass (ignoring resonance effects)

[Matsumoto, Senami, PLB633(2006)]



[From Matsumoto, Senami, PLB633(2006)]

•  $R^{-1}$  of **1** TeV is compatible with the observation of the abundance





 UED models provide a viable dark matter candidate: The lightest Kaluza-Klein particle (LKP)

• (Masses of 2<sup>nd</sup> KK particles)  $\simeq 2 imes$  (Masses of 1<sup>st</sup> KK particles)

Annihilation takes place near poles

 We evaluate the relic abundance of the LKP including resonance and coannihilation with the 1<sup>st</sup> KK singlet leptons, and find the allowed compactification scale shifts upward due to the resonance effect

Various coannihilation processes also affect the relic abundance