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Abstract. We investigate the relic density nχ of non–relativistic long–lived or stable particles χ
in cosmological scenarios in which the temperature T is too low for χ to achieve full chemical
equilibrium. The case with a heavier particle decaying into χ is also investigated. We derive
approximate solutions for nχ(T ) which accurately reproduce numerical results when full thermal
equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the
correct temperature dependence of the χ number density. However, it does give the correct final
relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures.
This talk is based on our work in Ref. [1].

Introduction. The production of massive, long–lived or stable relic particles χ plays a
crucial role in particle cosmology [2]. The perhaps most important example is the pro-
duction of Massive Weakly–Interacting Particles (WIMPs), which may constitute most
of the Dark Matter in the universe. Alternatively, WIMPs may only be meta–stable,
and decay into even more weakly interacting particles (e.g. gravitinos or axinos) that
form the Dark Matter. It is usually assumed that the WIMPs were in full thermal and
chemical equilibrium in the radiation–dominated epoch after the end of inflation. In this
“standard” case accurate semi–analytical expressions for nχ(T � TF) have been derived
[3, 4]. For typical WIMP scenarios, the freeze-out temperature is TF 'mχ/20. The stan-
dard treatment can work only if the reheat temperature TR, is larger than TF . On the other
hand, we have direct observational evidence only for temperatures T <∼ MeV, which is
well below TF for most current WIMP candidates. It is therefore legitimate to investigate
scenarios with TR <∼ TF . Existing treatments of thermal WIMP production assume that
nχ had either achieved full equilibrium, or was completely out of equilibrium. Here we
provide an approximate analytic treatment that also works in the intermediate region,
where both thermal production and annihilation of χ particles were important.

Standard cosmological scenario. We briefly review the calculation of the relic density
of long–lived or stable particles χ in the standard cosmological scenario [3], which
assumes that the relic particles were in thermal equilibrium in the early universe and
decoupled when they were non–relativistic. The relic density can be calculated by
solving the Boltzmann equation which describes the time evolution of the number
density nχ in the expanding universe [2],

dnχ

dt
+ 3Hnχ =−〈σv〉(n2

χ −n2
χ,eq) , (1)

with nχ,eq being the equilibrium number density of the relic particles, H the Hubble



parameter and 〈σv〉 the thermal average of the annihilation cross section σ multiplied
with the relative velocity v of the two annihilating χ particles. In most cases the cross
section is well approximated by a nonrelativistic expansion: 〈σv〉 = a + 6b/x. The
Boltzmann equation (1) can be rewritten by introducing the new variables x = m/T ,
Yχ = nχ/s and Yχ,eq = nχ,eq/s, where the entropy density s = (2π2/45)g∗T 3 with g∗
being the number of the relativistic degrees of freedom:

dYχ

dx
=−1.32 mχMPl

√
g∗〈σv〉x−2(Y 2

χ −Y 2
χ,eq) . (2)

It is useful to express the energy density as Ωχ = ρχ/ρc, where ρc = 3H2
0 M2

Pl is the
critical density of the universe. The present energy density of the relic particle is given
by ρχ = mχnχ,∞ = mχs0Yχ,∞, with s0 ' 2900 cm−3 being the present entropy density. It
is known that in this standard scenario the following approximate formula can give the
correct relic density:

Ωχh2 ' 8.7×10−11 xF GeV−2
√

g∗(xF)(a + 3b/xF)
, (3)

where h is the scaled Hubble constant, h' 0.7, and xF = m/TF .
Relic abundance in a low–temperature scenario. In the following we attempt to find

a convenient analytic formula applicable even to low temperature scenarios. As zeroth
order solution of Eq.(2) we consider the case where χ annihilation is negligible,

dY0

dx
= 0.028 g2

χg−3/2
∗ mχMPle−2xx

(
a +

6b
x

)
. (4)

For Yχ(x0) = 0, this equation gives

Y0(x� x0)' 0.014 g2
χg−3/2
∗ mχMPle−2x0x0

(
a +

6b
x0

)
. (5)

The most natural extension is to add a correction term which describes the effect of
annihilation on the solution for the pure production case: Y1 = Y0 + δ . As long as |δ | is
small compared to Y0, the evolution equation for δ is given by

dδ
dx

=−1.3
√

g∗mχ MPL

(
a +

6b
x

)
Y0(x)2

x2 . (6)

At late times, x→ ∞, the solution simplifies to

δ (x� x0)'−2.5×10−4 g2
χg−5/2
∗ m3M3

Ple
−4x0x0

(
a +

3b
x0

)(
a +

6b
x0

)2

. (7)

Since, for vanishing initial abundance, Y0 is proportional to σ , δ is proportional to σ 3.
On the other hand, for sufficiently large cross section we want to recover the standard
expression. This suggests to rewrite our ansatz as

Y = Y0 + δ = Y0

(
1 +

δ
Y0

)
' Y0

1−δ/Y0
≡ Y1,r . (8)
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FIGURE 1. Evolution of the exact solution Yχ (solid curves), Y1,r of Eq.(8) (dotted), the equilibrium
density Yχ,eq (double–dotted), and |δ | (short–dashed) as function of x− x0 for mχ = 100 GeV, gχ = 2,
g∗ = 90 and Yχ(x0 = 22) = 0. We take a = 10−9 GeV−2, b = 0 (left frame) and a = 10−8 GeV−2, b = 0
(right). In the left frame the curve for Y1,r practically coincides with the solid line.
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FIGURE 2. (left frame) Present relic density evaluated numerically (solid curve), the old standard
approximation (dotted) and our new approximation (double–dotted) as function of x0 for a = 10−9 GeV−2

and b = 0. (right) Ratio of the semi–analytic result Ωsemi−analytic to the exact value Ωexact as function of
x0− x0,max for b = 0. The other parameter are the same as in Fig. 1.

Although the final approximate equality in Eq.(8) only holds for |δ | � Y0, we note that
the resulting expression has the right behavior, Y1,r ∝ 1/σ , for large cross section. It is
also noted that this ansatz solves the Boltzmann equation (3) exactly in the simple case
where thermal χ production can be ignored, but Yχ(x0) is sizable.

In Fig. 1 we present the evolution of the solutions as function of x− x0. Clearly
the first order approximation Y1 fails to reproduce the exact result once |δ | becomes
comparable to Y0. On the contrary, it is shown that the re–summed ansatz Y1,r of Eq.(8)
reproduces the numerical solution very well for all x> x0 if a <∼ 10−9 GeV−2. However,
for intermediate values of x− x0, the disagreement between Y1,r and the exact solution
becomes large as the cross section increases. Sizable deviations from the exact value are
observed at x− x0 ∼ 1 for a = 10−8 GeV−2. For larger x the deviation becomes smaller
again, and for x� x0 the difference is insignificant even for these large cross sections.



In the left frame of Fig. 2 we plot the present relic density evaluated numerically (solid
curve), the old standard approximation (dotted) and our new approximation (double–
dotted) as function of x0. We find that our approximation agrees with the exact result
very well for x0 > xF . On the other hand, for x0 < xF , our approximation gives too
small an abundance while the old approximation works very well. This figure shows
that Y1,r(x0,x→ ∞) has a well defined maximum when x0 is varied. This maximum
occurs at a value x0,max which is close to the decoupling temperature xF .

Since the actual relic density is already practically independent of x0 for x0 < x0,max
we can construct a new semi-analytic solution which describes the relic density for
the whole range of x0: for x0 > x0,max, compute the relic density from Y1,r(x0), but for
x0 < x0,max, use Y1,r(x0,max) instead. The ratio of this semi–analytic result Ωsemi−analytic
to the exact value Ωexact is depicted in the right frame of Fig. 2. As noted earlier, our
approximation becomes exact for x0 >∼ xF . For smaller x0 the new approximation still
slightly under–estimates the correct answer, but the deviation is at most 1.7% for b = 0,
and 3.0% for a = 0.

Relic abundance including the decay of heavier particles. Here we consider a scenario
where unstable heavy particles φ decay into long–lived or stable particles χ . We assume
that φ decays out of thermal equilibrium, so that φ production is negligible; however,
we include both thermal and non–thermal production of χ particles. We assume that
φ does not dominate the total energy density, so that the co–moving entropy density
remains approximately constant throughout. Following the same procedure developed
in the previous section, we can obtain Y0, δ and Y1,r in this scenario. We find that the
resummed ansatz describes scenarios with nonthermal χ production from φ decay as
well as the thermal case.

Summary. In summary, we found analytical or semi–analytical solutions of the Boltz-
mann equation describing the density of non–relativistic relics which are valid for a
wide range of initial conditions. In particular, they allow a complete description of the
temperature dependence for small or moderate cross sections, and correctly reproduce
the final relic density for all combinations of initial temperature and cross section. This
should be a powerful tool for exploring the physics of non–relativistic relics, especially
in scenarios with low reheat temperature.
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