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Chapter 1
Introdution
1.1 Developing theories in natural sienes andthe signi�ane of quantum mehanisQuantum mehanis, together with the theory of relativity, represents one of thetwo great revolutions in physis marking the beginning of �modern physis�, inontrast to the period of lassial physis of the 19th entury and the time before.Both theories form the basis of today's understanding of nature: The theory ofrelativity, in general, with its only relevane under extreme onditions (high ve-loities, huge masses, osmology, partile ollider) and quantum mehanis, whihdetermines numerous phenomena of our daily environment. One important ex-ample of relativity, even at everyday available energy levels, is the magneti spin,whih an only be understood by means of quantum mehanis in ombinationwith relativity.Until the end of the 19th entury the world view of natural sienes was basedon (Newton's) lassial mehanis and (Maxwell's) eletrodynamis; that is: Itwas mehanisti, deterministi. However, unsolved problems existed:
• What is the soure of the sun's energy?
• Why are atoms solid? (Radiation deay)
• Why does hot atomi gas have a disrete spetrum?At �rst, one didn't onsider these problems as urgent and expeted them to be9



10 CHAPTER 1. INTRODUCTIONsolved soon within the theory of lassial physis. From what we know today,this was a fallay. Only by remodeling the physial theory ompletely, under-standing ould be ahieved. At the beginning of the 20th entury, new improvedexperiments developed, pushing towards a solution of these unsolved problemsand proved not only that these experiments were di�ult to understand withinthe theory of lassial physis, but that their explanation was inonsistent withlassial physis. Some of these mostly in miroosm tested experiments were:
• Spetrosopy of atoms
• Sattering experiments between partiles (eletron) and light (photon):Compton-e�et, photoeletri e�et
• Interferene of light-/partile radiation: Double slit experimentThese and other experiments demonstrated, that on the level of elementary par-tiles (where the sale yet has to be de�ned), these small elements behaved likewaves as well as partiles (wave-partile-dualism). Furthermore, some physialquantities proved to be only of quantized values and ausality was given onlyby its mean. Astonishingly, within 20 years the works of only a few people(Plank, Einstein, Heisenberg, Shrödinger, Dira, Pauli, Born) let to a ompletenew theory, the Quantum Theory, whih allowed orret spei�ations of thesemirosopi phenomena from then on. Therefore, we refer to this developmentas a revolution.From this example we an now derive (see �gure 1.3), how a physial theoryarises in general.One observes four substantial properties of the proess of disovery:1. One experiments reah so far unknown territory, results are di�ult tounderstand and tend to be misinterpreted.Reason: In the proess of evolution our brains adjusted to everyday life(antropi priniple); Phenomena out of human's experientialrange of knowledge remain inaessible.



1.1. DEVELOPING THEORIES 11

Theory

Hypothesis
ExperimentIntuition

TestingRepititionin ontraditionto previous onepts Observing naturein reent �elds)
Testing,desribing

way → intuition!in a mathematialCapturing nature

Figure 1.1: Development of a theory2. Conerning the desription of new phenomena, mathematis is an essentialomplementary siene.3. In ontrast to mathematis, mapping nature onto mathematial formalismis never rigorous, but always requires intuition. On the other hand, theinterpretation of a mathematial theory's results in order to desribe natureasks for adjustment.4. A theory has to be tested ontinuously by omparing it to the experimentalresults.Partiularly point three an be understood in terms of the quantum mehanialevolution:
• The fundamental equation of motion of quantum mehanis (Shrödingerequation) an not be derived from other theories, for its experiential spheregoes beyond the previous boundaries. Merely, its plausibility is only derivedfrom intuition.
• The interpretation of results and preditions asks for adjustment; �Kopen-hagener predition� (took deades). This proess of disovery and revolu-



12 CHAPTER 1. INTRODUCTIONtion is undergone by the student, while studying the Quantum Theory, aswell.
• Studying the mathematial formalism
• Only by adjustment and intuition understanding is possible.1.2 Historial fundamental experiments and on-sequenesThe basi priniples of lassial physis are Newton's mehanis and Maxwell'seletrodynamis, desribing matter as partiles and eletromagneti �elds aswaves:
• Classial mehanis: Movement of matterPartiles = Idealized point-shaped aumulation of mass m at posi-tion ~x and of momentum ~p.Equation of motion:

m~̈x = ~F = −~∇V (~x) Newton, Euler-Lagrange (1.1)
d~x

dt
=

∂H

∂~p

−d~p
dt

=
∂H

∂~x





Hamiltonian (1.2)
~x

~pmFigure 1.2: Quantities desribing a single partile



1.2. FUNDAMENTAL EXPERIMENTS 13
• Classial eletrodynamis: Dynamis of eletromagneti �eldsLight = wave (spatial, time extended disturbane)Wave-equation of frequeny ω and wavelength λ :

1

c

∂2

∂t2
~E(~x, t)− ~∇2 ~E(~x, t) = 0 (1.3)

~E(~x, t) = ~E0 e
i(~k~x−ωt) (1.4)Im( ~E)

~x

Figure 1.3: Visualization of a propagating wave
In this setion we will disuss the key experiments, whih let at the beginningof the 20th entury to the realization, that previous ideas lost its validity oneatomi quantities are reahed. In the following setion, we will note in eahase the key ideas that ontributed to the establishment of the Quantum Theory.Historially, the property of light, to show wave and partile harateristis atthe same time, was deteted �rst. Only after a while the wave harateristi ofmatter under ertain irumstanes was observed as well.



14 CHAPTER 1. INTRODUCTION1.2.1 The photoeletri e�etFigure 1.4 shows the radiation of light on a metal surfae.
{ {

e−

E, ~pA
c ·∆tLight with frequeny ω = c · 2π/λFigure 1.4: The photoeletri e�et

• Expetations aording to lassial eletrodynamis and mehan-is:The energy density of the eletromagneti wave is independent of ω
1

8π
(E2 +H2) ∼ I ∝ intensity (1.5)The energy is ontinuously transmitted onto the eletrons in the metal

⇒ For arbitrarily small frequenies the work Wa is transmitted afterthe time sequene ∆t , that is for eah eletron:
Wa = (c∆t) · A ·W, A = E�ieny of energy transmission (1.6)

• Experimental �ndings, as shown in �gure 1.5:1. Eletrons are released only when the frequeny of light ω exeeds thethreshold value ωmin .
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Ee−

−Wa

Ee− = ~ω

ωmin ω

Figure 1.5: Transmitted energy2. Eletrons are released immediately, if ω > ωmin (not after a time ∆t )3. Their energy is given by Ee− = ~ω+Wa , while the proportional on-stant ~ was determined numerially as the so alled �Plank onstant�(Plank, 1900; Cavity radiation):
~ = 1, 055 · 10−34Js (1.7)4. The number of released eletrons per time unit (not the energy of oneeletron) is proportional to the intensity of light.The wave property of light, the wavelength λ and frequeny ω = c 2π

λ
, as well asthe partile harater of eletrons, the energy Ee− = p2

2m
and momentum p ouldbe determined experimentally. Moreover, a diret relation between Ee− and ωould be established.Einstein's Interpretation (1905) (Nobel prie 1921)1. Partile hypothesis and energy-frequeny relationThe energy of light is transferred diretly in pakages of energy propor-tional to the frequeny, suh that:

Eph = ~ω (photons) (1.8)The threshold frequeny ωmin orresponds to the work funtion:
Wa = ~ωmin (1.9)



16 CHAPTER 1. INTRODUCTIONThis diret transmission and the onstant energy at stationary frequenyare harateristi of partiles.Einstein was the �rst to de�ne these energy pakages as partiles and alledthem �photons� (a revolutionary step, Plank did not dare to take). If Ein-stein's partile hypothesis was true the proportional onstant between en-ergy and frequeny had to be equal to the Plank onstant ~ , whih relatedPlank's energy-quantums of light to the frequeny. This equivalene wason�rmed numerially.2. Momentum-wavelength relationWhile the energy-frequeny relation was derived diretly from the quan-tities Ee− and ω , the relation between momentum and wavelength λ (wavenumber k, respetively) was established numerially, sine the momentumof the photo e�et is not aessible experimentally:As partiles of light, photons have to move at light-veloity v = cand their mass at rest vanishes mph = 0 . With the relativistienergy-momentum relation we obtain:
E =

√
m2
phc

4 + p2v2 = p c (1.10)for mph = 0, v = c (partiles)
= ~ω = ~ ck = ~ c

2π

λ
(wave) (1.11)

⇔ p = ~ k =
2π

λ
~ (photons) (1.12)Mathematial supplementation 1: Fourier transformationRepresentation of vetors in orthonormal basis

• In general:
B = {|n〉|n ǫM} basis of spae V (1.13)Arbitrary vetor of V:
|a〉 =

∑

nǫM

an|n〉 (ompleteness) (1.14)



1.2. FUNDAMENTAL EXPERIMENTS 17Salar produt:
〈b | a〉 (1.15)

B is orthonormal basis:
〈m |n〉 = δmn ∀ n,m ǫM (1.16)Coe�ients of orthonormal basis representation:
〈m | a〉 =

∑

nǫM

an 〈m |n〉︸ ︷︷ ︸
δmn

= am (1.17)
an = 〈n | a〉 (1.18)
|a〉 =

∑

nǫM

|n〉〈n | a〉 (1.19)
• Spei�ally: V spae of in�nite di�erential square-integrable funtionsBasis:

B = {|k〉 =
1√
2π

eikx| k ǫR} (1.20)Arbitrary funtion of V :
f(x) =

∫
dk√
2π

f(k) eikx (1.21)Salar produt of V :
〈g | f〉 :=

∫
dx g∗(x)f(x) ∈ C (1.22)

B is orthonormal basis:
〈k′| k〉 =

∫
dx

2π
e−i(k

′−k)x = δ(k′−k) (orthogonal) (1.23)Coe�ients of orthonormal representation:
f(k) = 〈k | f〉 =

∫
dx√
2π

e−ikxf(x) (1.24)(1.21) and (1.24) form the Fourier transformation!



18 CHAPTER 1. INTRODUCTIONMathematial supplementation 2: Group veloityVeloity of wave pakets (�wave group�) (see �gure 1.6).
(x,t)ψ v

xFigure 1.6: Veloity of a wave paketFourier representation of wave pakets (superposition of plane waves):
ψ(x, t) =

∫
dk√
2π

ψ(k) ei(kx−ωkt) (1.25)To eah wave number k orresponds the frequeny ωk (in general, funtion of kor vie versa)Example: Wave of light in a partiular mediumExpetation value of the wave paket's state in spae:
x̄(t) =

∫
dx x|ψ(x, t)|2 (1.26)

=

∫
dx

∫
dk′√
2π

∫
dk√
2π

e−i(k
′x−ωk′ t)ψ∗(k′) xψ(k) ei(kx−ωkt) (1.27)

=

∫
dx

∫
dk′√
2π

∫
dk√
2π

e−i(k
′x−ωk′ t)ψ∗(k′)ψ(k)

[
1

i

∂

∂k
+
∂ωk
∂k

t

](1.28)
×ei(kx−ωkt)

=

∫
dk′
∫
dk δ(k′ − k)ψ∗(k′)ψ(k)

[
1

i

∂

∂k
+
∂ωk
∂k

t

]
ei(ωk′−ωk) (1.29)

=

∫
dk |ψ(k)|2 ∂ωk

∂k
t (1.30)
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∼= ∂ωk

∂k

∣∣∣∣
k0

t

∫
dk |ψ(k)|2

︸ ︷︷ ︸
=1

, ψ(k) entered at k = k0 (1.31)Normalized wave funtion:
∫
dk |ψ(k)|2 = 1 (1.32)

∫
dk |ψ(k)|2 =

∫
dk

∫
dx′√
2π

dx√
2π

ψ∗(x′)ψ(x)e−ik(x
′−x) (1.33)

=

∫
dx′
∫
dx δ(x− x′)ψ∗(x′)ψ(x) (1.34)

=

∫
dx |ψ(x)|2 = 1 (1.35)and v =

∂x̄

∂t
=
∂ωk
∂k

∣∣∣∣
k0

(1.36)1.2.2 Interferene experiment (double slit experiment)Historially: Interferene phenomena of e− and n-beams were observed �rst sat-tering them at rystalline strutures. But the diret double slit ex-periment was possible only at a later time. However, rystals showthe same interferene e�ets as grids do. Therefore, we take a loserlook at the double slit set up:(a) Figure 1.7 shows the experiment with lassial partiles
p12=p1+p2

p1

p2

����
����
����
����
����
����

����
����
����
����
����
����

x x

p pz

Detector

x

Source

1

2

Figure 1.7: Double slit experiment with partiles



20 CHAPTER 1. INTRODUCTIONNo evidene of interferene. The pattern of intensity on the sreen is thesum of intensities Pi, i = 1, 2 of eah of these 2 beams.(b) Figure 1.8 shows the experiment with lassial waves (water, light,...)
Detector
(photo plate)

p1

p2

p12

.{ L

x

z
d

b

α

α

p

x x

p

Figure 1.8: Double slit experiment with waves
Calulation of interferene pattern (distribution of intensity onthe sreen)Wave oming from �rst or seond slit at position x on the sreen:

ψ1,2(x, t) = ψ0 e
i(kd1,2(x)−ωt), k =

2π

λ
wave number (1.37)Possible paths:

d1(x) =
√
L2 + x2 ≈ L, L≫ x (1.38)

d2(x) = d1 + d sin(α) (1.39)
≈ d1 +

d

L
x, x = L tan(α) ≈ L sin(α), α≪ 1 (1.40)Total intensity at position x on the sreen (Linear superposition of ampli-tudes):

I(x) = |ψ1(x, t) + ψ2(x, t)|2 (1.41)
= |ψ0|2 · | ei(kd1−ωt)|2 · |1 + eik

d
L
x|2 (1.42)

= 2 |ψ0|2 [1 + cos(2π
λ
d
L
x)] (1.43)
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Distance of the
maxima x0=L/d.λ

x0Figure 1.9: Expeted amplitude of intensity pattern(In ontrast to �gure 1.9 we have a subsiding modulated amplitude withinreasing x. In the experiment: Result of �nite oherene length)() Double slit experiment with mirosopi partiles of matter (ele-trons)The pattern of interferene is equivalent to waves of light.
⇒ Matter shows wave properties (1.44)Energy E = p2

2m
, momentum p and wavelength λ diretly measurable inthe double slit experiment (from distane of maxima):

p = ~ 2π
λ

= ~k (de Broglie-wavelength) (1.45)Energy-frequeny-relation needs orrelation of wave number k and frequeny
ω of e− . Integration of group veloity and the partile veloity v = ∂ωk

∂kresults in the desired equation:
p

m
= ~

∂ωp
∂p

; p = ~k, v =
p

m
(1.46)

⇒ ~ω =
p2

2m
+ E0 = Ekin +mc2 (1.47)

⇒ ~ω = E (1.48)The onstant of integration is de�ned as the energy of eletrons at rest,
E0 = mc2



22 CHAPTER 1. INTRODUCTIONAnnotations: The referene point of energy (E - origin) as well as the fre-queny ω of partiles an be hosen at will. This arbitrarinessis expressed in the integration onstant E0 . Therefore, withinnon-relativisti alulations, the resting energy an be omit-ted.If the intensity of the inoming beam at the double slit experiment (lightor matter) is hosen su�iently small, the ontinuous intensity distributionon the sreen turns into a disrete aumulation of points (on the detetor);see �gure 1.10.
x xFigure 1.10: Intensity distribution of the double slit experimentThat is, light and eletrons on the detetor are realized as partiles (a hem-ial reation of a single moleule, similar to the photo e�et)

⇒ Intensity |ψ|2 of interferene pattern returns the probabilityof a photon or eletron to be measured at position x on thesreen.1.2.3 Further experiments(a) Compton e�et (see �gure 1.11)Non-elasti sattering of light at (resting) eletrons.The wavelength of light enounters a hange through the sattering proesswhih an be understood as a redution of the photo-momentum beause of



1.2. FUNDAMENTAL EXPERIMENTS 23the reoil. A diret relation between the photo-momentum and wavelengthan be derived from this.(b) Cavity radiation (see �gure 1.11)Radiation in thermodynamial equilibrium with its environment (tempera-ture T).
pout

e−

λ in

λ in λout>

Figure 1.11: Compton sattering / Radiation in thermodynamial equilibrium

T1

T2>T1

Rayleigh−Jeans

Planck

∼ω 2

ω

U

Figure 1.12: Spetral energy desnityRaleigh-Jeans:
U(ω) =

kBT

π2c3
ω2 (1.49)

Etot =

∫
dω U →∞ UV-disaster (1.50)



24 CHAPTER 1. INTRODUCTIONPlank (1900):Postulated quantized energy of radiation for given energy E = n~ω (avoidspartile - interpretation).Substitute:
kBT →

~ω

exp
(

~ω
kBT

)
− 1
→ Fit ~ (1.51)() Modern experiments:� Interferene of atomi beams� Diret measurement of the wave funtion with STM1.2.4 Conlusions(1) Light and matter show partile as well as wave properties (wave-partiledualism). Depending on the experiment, one or the other property an beobserved.For example: Experiment light matterPhoto-e�et partile partileDouble slit wave waveTable 1.1: The wave-partile dualismIn general, the following applies to light and matter:

p = ~k =
2π

λ
~ λ = de Broglie wavelength (1.52)

E = ~ω, (1.53)where
E = pc (light) (1.54)

=
p2

2m
+ E0 (matter). (1.55)



1.2. FUNDAMENTAL EXPERIMENTS 25(Energy-momentum relation → frequeny-wavelength relation, dispersion)The theoretial onsequenes will be disussed in detail:- Quantum physial reality depends on the experiment (observer).- Causality and determinism (why does e− propagating through slit 1�know� whether slit 2 is open or losed?).- Quantummehanial objets are neither partiles nor waves, but higherobjets to show under ertain irumstanes either the one or the otherproperty. The paradox (dualism) is not the objet itself, but arisesfrom the fat, that we (as observer) onlude with our measurementsa partile or wave state (ollaps of wave funtion). Sine our brainsan only grasp and interpret the lassial terms, the paradox developsin us.- Observer beomes part of observed world.(2) Statistial interpretation:One the partile property is proved in an experiment, the intensity |ψ(x)|2of the respetive wave funtion ψ(x, t) reveals the probability density tomeasure the partile at x. ψ(x, t) is therefore alled the wave funtion ofthe partile.

Figure 1.13: Left side: Eletron wave pakets on a metal surfae. Right side:Eletron wave in a ferroatomi ring on top of a opper layer.(3) The intensity ( = probability density) has to be normalized:
∫
dx |ψ(x, t)|2 = 1, ∀t (1.56)
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Figure 1.14: Probability density with eletron waves

Figure 1.15: Helium atomi beam di�ration by a 100 nm-period transmissiongratingCalulation of the mean for many measurements:
x̄ =

∫
dx x |ψ(x)|2 (1.57)

(4) Priniple of superposition:If ψ1(x, t), ψ2(x, t) are two wave funtions (and let marginal terms forslit 1/2 open/losed be given), then also ψ1(x, t) + ψ2(x, t) = ψ(x, t) is apossible wave funtion. The equation of motion for the wave funtion hasto be linear.



1.2. FUNDAMENTAL EXPERIMENTS 271.2.5 Shrödinger equation, energy, momentum operatorWe approah now the question, how the energy, the momentum and the equa-tion of motion an be determined mathematially, if the wave funtion is given(heuristi approah).Plane wave (has de�ned p, E):We look for the di�erential equation
ψ(~x, t) = ψ0 e

i(~k~x−ωt). (1.58)Whih �operator� has to be applied on ψ suh that the energy ~ω and the mo-mentum are reeived as pre-fators?
i~

∂

∂t
ψ(~x, t) = i~

∂

∂t
ψ0 e

i(~k~x−ωt) = ~ω ψ(~x, t) (1.59)
−i~∇ψ(~x, t) = −i~∇ψ0 e

i(~k~x−ωt) = ~~k ψ(~x, t) (1.60)Energy-operator:
Ê = i~

∂

∂t
(1.61)Momentum-operator:

~̂p = −i~∇ (1.62)For free matter partiles, we have:
E =

~p 2

2m
(1.63)As a result, the plane matter-wave of a free partile with mass m has to followthe equation of motion:

i~
∂

∂t
ψ(~x, t) =

(−i~∇)2

2m
ψ(~x, t) (1.64)

Êψ =
~̂p

2

2m
ψ (1.65)In ase the partile is moving within a potential V (~x) , we postulate that thetotal energy is the sum of the kineti and the potential energy (Shrödinger) and



28 CHAPTER 1. INTRODUCTIONwe get:
Êψ =

[
~̂p

2

2m
+ V (~x)

]
ψ

i~
∂

∂t
ψ(~x, t) =

[
− ~2

2m
∇2 + V (~x)

]
ψ(~x, t)

(1.66)
Remarks:(1) Shrödinger equation has to be homogenous, beause of probability onser-vation. This equation is the most simplest inluding also the speial aseof free partiles.(2) Shrödinger equation has to be linear → Priniple of superposition.



Chapter 2
The Postulates of Quantum Theory
2.1 Mathematial basisChapter one introdued the wave funtion ψ(x, t), whih forms a vetor spaeaording to the priniple of superposition (to add another wave funtion or mul-tiply with numbers). Furthermore, it proved to be useful to de�ne a mappingthrough so alled �operators�, who at on the vetor spae. Now, we will disussseveral mathematial strutures and de�ne the postulates of quantum mathemat-is afterwards.2.1.1 Vetor spae (of �nite dimension)De�nition: The vetor spae V is the number of vetors V = {|v〉} , whih obeythe vetor-addition and salar multipliation, suh that:

| v〉+ |w〉 = | u〉, ∀ | v〉, |w〉 ∈ V (2.1)
a | v〉 = |w〉, ∀ a ∈ R or C (2.2)For the axioms follows:1. Completeness:
| v〉+ |w〉 ∈ V and a | v〉 ∈ V (2.3)29



30 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY2. Commutation relation:
| v〉+ |w〉 = |w〉+ | v〉 (2.4)3. Compatibility of addition:
| v〉+ (|w〉+ | u〉) = (| v〉+ |w〉) + | u〉 (2.5)4. Distributivity of salar-multipliation:

(a + b)| v〉 = a| v〉+ b| v〉 (2.6)
a (| v〉+ |w〉) = a| v〉+ a|w〉 (2.7)5. Compatibility of multipliation:
a (b| v〉) = (ab) | v〉 (2.8)6. Zero-vetor:
∃! | 0〉 : | v〉+ | 0〉 = | v〉 (2.9)7. Inverse element of addition:
∀ | v〉 ∈ V ∃ | − v〉 ǫV : | v〉+ | − v〉 = | 0〉 (2.10)

V is real (omplex), if the salar a ∈ R (a ∈ C).Expansion in basis, oordinate representationA Basis B = {| k〉| k = 1, ..., N} is the number of vetors | k〉 ∈ V with theproperties:1. Every vetor | v〉 ∈ V represents a linear ombination of | k〉 :
| v〉 =

N∑

k=1

vk| k〉, ∀ | v〉 ∈ V, vk ∈ R,C (2.11)



2.1. MATHEMATICAL BASICS 312. Uniqueness:
∄ {ak′ ∈ R,C| k′ 6= k} suh that | k〉 =

∑

k′=1,..,N
k′ 6=k

ak′ | k′〉 (2.12)
⇒ We have a unique basis-expansion. The number of basis vetors N isharateristi of V and is alled dimension (proof by inonsisteny).Coordinate-representation:Let a basis B be given. Hene, to every vetor | v〉 ∈ V we an assign (on-sidering equation (2.11)) an array of N numbers (oordinates):

| v〉 bijetive←→ ~v = (v1, ..., vN)T (2.13)Regulations for vetor-addition and multipliation are valid for array omponents
~v = (v1, ..., vN )T as well.
⇒ Vetor spae of N-arrays is isomorphi to the vetor spae V = {| v〉}.
⇒ All properties of V an be demonstrated with N-arrays as shown in�gure 2.1 and then transferred onto the abstrat spae V.

|v〉

|1〉 v1|1〉

v2|2〉

|2〉

Figure 2.1: Correlation of V and N-array



32 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY2.1.2 Linear operators on VFirst of all we onsider a mapping A: V → V suh that A| v〉 = |w〉. Furthermore we laim that A is linear, i.e.:
A (| v〉+ |w〉) = A| v〉+ A|w〉 (2.14)

A (a| v〉) = a (A| v〉) (2.15)In oordinate representation with hosen basis, the linear map is given by:
A| k〉 = | u〉k =

N∑

l=1

| l〉 alk, (2.16)with the matrix entries
A = (akl) =




a11 ... a1N

: :

aN1 ... aNN


 . (2.17)Beause of linearity, we an apply the ommon rules of matrix-multipliation and-addition.2.1.3 Salar-produt and dual spaeDe�nition: Salar-produt (Inner produt)Let a bilinear map

(V,V) → R,C (2.18)
(| v〉, |w〉) → a ∈ R,C (2.19)be given for whih the following notation will be used:
〈v |w〉 → a ∈ R,C (2.20)This map has the following properties:

〈v |w〉 = 〈w | v〉∗ (2.21)
〈v | v〉 ≥ 0 (positive semi-de�nite) (2.22)

〈v | (a|w〉+ b| u〉) = a 〈v |w〉+ b 〈v | u〉 (2.23)



2.1. MATHEMATICAL BASICS 33(Property 1 is a onsequene of the linearity in the �rst argument (bilinear))De�nition: Norm
|v| =

√
〈v | v〉 is length of | v〉 (2.24)Expansion in orthonormal-basis B = {| k〉} :Choose a basis suh that

〈k | k′〉 = δkk′ (2.25)and
| v〉 =

N∑

k=1

vk| k〉, (2.26)where the oe�ients are given by
〈k | v〉 =

N∑

k′=1

vk′〈k | k′〉 = vk. (2.27)Matrix elements of an operator A with orthonormal-basis B = {| k〉} :
A| k〉 =

N∑

l=1

alk| l〉 (2.28)
〈k′|A| k〉 =

N∑

l=1

alk〈k′| l〉 = ak′k (2.29)Hermitian onjugate operatorIf A is de�ned by (akl), the hermitian onjugate operator for A is de�ned by
A+ = (A⊺)∗ = (a∗kl) and (A+)+ = A. (2.30)For an arbitrary orthonormal-basis the salar-produt of two vetors reads:

| v〉 =
N∑

k=1

vk| k〉, |w〉 =
N∑

k′=1

wk′| k′〉 (2.31)
⇒ 〈v |w〉 =

N∑

k,k′=1

v∗kwk′〈k | k′〉 =
N∑

k=1

v∗kwk (2.32)



34 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYThis is the well-known artesian salar-produt:
〈v |w〉 = (v∗1, ..., v

∗
N)




w1...
wN


 =

N∑

k=1

v∗kwk (2.33)
The line-vetors (v∗1 , ..., v

∗
N) =




v1...
vN




† are hermitian onjugate vetors to theolumn vetors (hermitian onjugate = transpose + omplex onjugate). There-fore, 〈v | = | v〉+ an be identi�ed with the hermitian onjugate vetor to | v〉.De�nition: The spae of hermitian onjugate vetors {〈v|} = V (line-vetors) is the dual spae to the vetor-spae V = {| v〉}.Why is useful to make this distintion?Here we want to �nd out what the e�et of the linear operator 〈v | (A|w〉). Let
| v〉, |w〉 be arbitrary vetors:

|w〉 =
N∑

k=1

wk| k〉 (2.34)
A|w〉 =

N∑

k=1

wk A| k〉 =

N∑

l,k=1

| l〉 alkwk (2.35)Or in detail:
A|w〉 =




a11 · · · a1N... ...
aN1 · · · aNN







w1...
wN


 =




∑N
k=1 a1kwk...∑N
k=1 aNkwk


 (2.36)It follows:

〈v | (A|w〉) =
∑

m,k,l

v∗malkwk 〈m | l〉 =
∑

k,l

v∗l alkwk (2.37)
= (〈v |A) |w〉 =

∑

k,l

((
aTkl
)∗
vl
)∗
wk (2.38)

= 〈A+v |w〉 =: 〈v |A|w〉 (2.39)
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⇒ If A operates in the diret spae, A+ has an e�et in the dual spae.In detail:

(v∗1, . . . , v
∗
N)




a11 · · · a1N... ...
aN1 · · · aNN







w1...
wN


 (2.40)Dira-notation:

〈 v | A | w 〉︸ ︷︷ ︸bra -  - ket (2.41)2.1.4 Shwarz- and triangle-inequality1. Shwarz-inequality
|〈v |w〉| ≤ |v| · |w| (2.42)The value of the salar-produt of two vetors an not be greater than theprodut of their lengths, as it is shown in �gure 2.2.

.

|w〉

|v||〉

|v⊥〉|v〉

Figure 2.2: Vetor representation of the Shwarz-inequality
|〈v|w〉| = |v||| · |w| (2.43)

≤ |v| · |w| (2.44)The equality holds if and only if
|v〉 = λ · |w〉. (2.45)



36 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYUsage of bra--ket-notation: bra: 〈v | ket: | v〉Let |n〉 be an arbitrary normalized vetor, i.e. 〈n |n〉 = 1. |n〉 is anelement of the orthonormal basis B = {|n〉} (if not, hoose |n〉 = | en〉√
〈n |n〉

,whih is a normalized vetor).Then, P̂n = |n〉〈n | is the projetor on |n〉 with the projetion property
P̂ 2
n = |n〉〈n |n〉〈n | = |n〉〈n |, (2.46)suh that |n〉〈n | projets eah vetor | v〉 on its omponent along |n〉, i.e.:
|n〉 〈n | v〉︸ ︷︷ ︸

vn

= vn︸︷︷︸
n-thomponent |n〉 (2.47)In detail: Coordinate-representation with basis {|n〉}

|n〉〈n | =̂




0...
1...
0




(0, . . . , 1, . . . , 0) and (2.48)
|v〉 =




v1...
vn...
vN




(2.49)
|n〉〈n | v〉 =̂




0...
1...
0




(0, . . . , 1, . . . , 0)




v1...
vn...
vN




(2.50)
= vn




0...
1...
0




= vn|n〉 (2.51)



2.1. MATHEMATICAL BASICS 37Sum over all projetors on orthonormal basis vetor:
N∑

n=1

|n〉〈n | = 1 (ompleteness) (2.52)
〈n |n〉 = 1 (normalization) (2.53)Expansion in orthonormal basis: �Insertion of basis�

| v〉 = 1| v〉 =
N∑

n=1

|n〉 〈n | v〉︸ ︷︷ ︸
vn

, (2.54)matrix elements of an operator A in orthonormal basis.Proof : Split | v〉 into omponents parallel and perpendiular to |w〉.
| v⊥〉 = | v〉 − |w〉 〈w | v〉〈w |w〉 (2.55)
| v‖〉 = |w〉 〈w | v〉〈w |w〉 (2.56)
| v〉 = | v⊥〉+ | v‖〉, (2.57)where |w〉
〈w |w〉 is a unit vetor parallel to |w〉 and |w〉〈w |

〈w |w〉 is the projetor on
|w〉. Then one yields

〈v |w〉 = 〈v‖ |w〉+ 〈v⊥ |w〉 = 〈v‖ |w〉 (2.58)with
〈v⊥ |w〉 = 〈v |w〉 − 〈w |w〉

〈w | v〉
〈w |w〉 = 0. (2.59)One the other hand one �nds

0 ≤ 〈v⊥ | v⊥〉 = 〈v − 〈w | v〉〈w |w〉 w| · | v −
〈w | v〉
〈w |w〉 w〉 (2.60)

= 〈v | v〉 − 〈w | v〉
∗〈w | v〉

〈w |w〉 − 〈w | v〉〈w | v〉
∗

〈w |w〉 (2.61)
+
〈w | v〉∗〈w | v〉〈w |w〉

〈w |w〉2

= 〈v | v〉 − 〈w | v〉〈v |w〉〈w |w〉 (2.62)



38 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYand therefore gets
〈v | v〉 ≥ 〈w | v〉〈v |w〉

〈w |w〉 (2.63)
√
〈v | v〉

√
〈w |w〉 ≥ |〈w | v〉|. (2.64)2. Triangle-inequality

|| v〉+ |w〉| ≤ |v|+ |w| (2.65)The equality is given, if | v〉 = λ|w〉, i.e. if the vetors are parallel.
|v〉+ |w〉

|w〉

v〉Figure 2.3: Vetor representation of the triangle-inequality
2.1.5 Hermitian, anti-hermitian and unitary operators
H hermitian:

H† = H (2.66)
A anti-hermitian:

A† = −A (if A real⇒ † = T ) (2.67)Every operator Ω an be split up into a hermitian and anti-hermitian part:
H = 1

2
(Ω + Ω†) hermitian (2.68)

A = 1
2
(Ω− Ω†) anti-hermitian (2.69)with Ω = H + A (2.70)
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U unitary:

|U |v〉| = |v|, ∀|v〉 norm invariant (2.71)
U is unitary if and only if

U †U = 1 , (2.72)i.e. that U †U is the unit operator (identity).Proof :
|U | v〉|2 = |v|2 = 〈v | v〉 (2.73)

⇔ 〈Uv |Uv〉 = 〈v |U †U | v〉, ∀ | v〉 (2.74)
⇔ U †U = 1 (2.75)2.1.6 The eigenvalue problemLet Ω be a linear operator in an N-dimensional spae

Ω| v〉 = λ| v〉, (2.76)where | v〉 is the eigenvetor and λ the eigenvalue belonging to | v〉. Equation(2.76) always has N solutions for λ and | v〉, where two or more values of λ maybe degenerated.Proof :
(Ω− λ1) |v〉 = 0 (2.77)has solutions, if (Ω− λ1) is singulary, i.e.
D = det(Ω− λ1). (2.78)

D is a polynomial of order N and onsequently has N omplex solutions.The hermitian operators H = H† are of exeptional importane:



40 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY1. All eigenvalues λ are real.Proof:
H| v〉 = λ| v〉 (2.79)

〈v |H| v〉 = λ〈v | v〉 (2.80)
〈v |H†| v〉 = λ∗〈v | v〉 (2.81)
⇔ λ∗ = λ real (2.82)2. Eigenvetors | v1〉, | v2〉 for di�erent eigenvalues λ1, λ2 are orthogonal.Proof:
H| v1〉 = λ1| v1〉 (2.83)
H| v2〉 = λ2| v2〉 (2.84)

〈v2 |H| v1〉 = λ1〈v2 | v1〉 (2.85)
〈H†v2 | v1〉 = λ∗2〈v2 | v1〉 = λ2〈v2 | v1〉 (2.86)
λ1 6= λ2 ⇒ 〈v2 | v1〉 = 0 (2.87)Hene, an orthonormal eigenvetor basis for H = H† an always be found.If there are degenerate eigenvetors, the orthonormal basis an be hosenin the subspae of the degenerate eigenvetors.3. Transformation to an eigenvetor basis: Diagonal strutureWe look for a transformation, suh that H has diagonal struture.Let B = | vn〉 be an arbitrary orthonormal basis and let {|n〉} be an or-thonormal eigenvetor basis. One then obtains.

H|n〉 = λn|n〉 (2.88)
UHU−1U |n〉 = λnU |n〉 (2.89)

U transforms to this basis, suh that one �nds in oordinate representation:
U |n〉 =̂ (0, ..., 1, ..., 0)T (2.90)



2.1. MATHEMATICAL BASICS 41For the original basis one gets:
U−1U |n〉 =




n1...
nN


 = U−1(0, ..., 1, ..., 0)T (2.91)

=




ū1n...
ūNn


 n-th olumn vetor of U−1 (2.92)Beause of the unitarity of U , from U−1 = U † follows the relation

U = (U−1)†. (2.93)The olumn vetors of U−1 are the orthonormal eigenvetors.2.1.7 Generalization onto in�nite dimensions: The HilbertspaeThe amount S of omplex funtions of a support S forms a vetor spae due tovetor addition and salar multipliation with a omplex number:
|f〉 : x 7→ f(x), ∀ x ǫ S (2.94)For example:

S = �nite onstant interval (see �gure 2.4), S = R , S = Rn

0 x

L/2 −→∞−∞←− −L/2 Figure 2.4: Funtion of support S



42 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYSalar produt: Componentwise multipliationIntegral:
〈g | f〉 =

∫ +L/2

−L/2
dx g∗(x)f(x) (2.95)Operators on funtion-spae:Position operator x: f(x) 7→ xf(x)Momentum operator p:f(x) 7→ pf(x) = −i~ ∂

∂x
f(x)Funtions f(x) an in every x be interpreted as vetor omponents of f in oor-dinate representation, where x is the vetor index of the x-th omponent:

| f〉 =




f(x1)...
f(xN)


 (2.96)For ontinuous x:

xn − xn−1 → 0 (2.97)
x1 = −L/2 (2.98)
x2 = L/2 (2.99)Position representation: δ-funtionWhat are the basis funtions {| bx〉| x ∈ S} in this representation?The arbitrary funtions f ∈ V have to obey

f =

∫
dx′ f(x′)| bx′〉. (2.100)The only funtion to ful�ll this requirement is the �Dira-Delta-funtion� (see�gure 2.5)

δ(x− x′) =

{
0, x 6= x′

∞, x = x′,
(2.101)whih has the following properties:



2.1. MATHEMATICAL BASICS 431. ∫ dx δ(x− x′) = 12. δ(x− x′) = δ(x′ − x)Sine ∞ /∈ C, δ has to be de�ned as limit of a series of funtions:1. Lorentz-funtionsOne de�nition of the δ-funtion is the limit
δ(x− x′) = lim

γ→0
fγ(x− x′), (2.102)where fγ(x− x′) is the Lorentz-funtion

fγ(x− x′) =
γ

π((x− x′)2 + γ2)
. (2.103)

fγ→∞(x) ful�lls the properties:
γ3 < γ2

γ2 > γ1

γ1

xx′Figure 2.5: Delta-funtion for di�erent γ
•
∫
dx fγ(x) = 1 ∀ γ, also γ → 0

• fγ(x− x′) =

{
1
πγ

→∞, γ → 0, x = x′

γ
π((x−x′)2+γ2)

→ 0, γ → 0, x 6= x′2. Gauÿ-funtions
gσ(x− x′) = lim

σ→0

√
1

πσ2
e−

(x−x′)2

∆2 (2.104)Also this de�ntion, using the limit of the Gauÿ-funtions, ful�lls the prop-erties of the δ-funtion.



44 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYThe Dira-δ-funtions form per de�nition an orthonormal basis.Notation:
| x1〉 = δ(x− x1), (2.105)where x is the variable and x1 is an index.

x1 xFigure 2.6: Peak at x1 as a funtion of x
• Orthonormality:

〈x1 | x2〉 =

∫ +∞

−∞
dx δ(x− x1) δ(x− x2) (2.106)

= δ(x1 − x2) (2.107)
• Completeness:

∫
dx1 | x1〉〈x1 | =

∫
dx1 δ(x− x1) δ(x

′ − x1) (2.108)
= δ(x− x′) = 1 (2.109)The Dira-δ-funtions are the eigenfuntions of the position operator x̂.Matrix elements of x with respet to δ(x− x′).

〈x1 |x̂| x2〉 =

∫
dx δ(x− x1) x δ(x− x2) = x1 δ(x1 − x2) (2.110)The basis representation of the funtion spae S regarding the delta funtions isalled position representation.



2.1. MATHEMATICAL BASICS 45Momentum representation (Fourier representation)We hoose a basis {| k〉 = 1√
2π
eikx| k ∈ R}.

• Orthonormality:
〈k1 | k2〉 =

∫
dx

2π
ei(k1−k2)x = δ(k1 − k2) (2.111)

• Completeness:
∫
dk1 | k1〉〈k1 | =

∫
dk1

2π
eik1(x−x

′) = δ(x− x′) = 1 (2.112)
• An arbitrary funtion |f〉 ∈ S an be represented in the basis {|k〉} :

| f〉 =
∫
dk fk | k〉, (2.113)or omponentwise

f(x) =

∫
dk√
2π

fk e
ikx. (2.114)Convention: fk = f(k) Fourier-transformed

• The omponents fk of the expansion an, beause | k〉 is orthonormalized,be written as
fk ≡ f(k) =

∫
dx√
2π

fx e
−ikx
︸ ︷︷ ︸
| k〉†

= 〈k | f〉 (2.115)the so alled Fourier-transformation. The | k〉 are eigenfuntions of themomentum operator:
−i~ ~∇ eikx√

2π
= ~k

eikx√
2π

(2.116)Hene, the Fourier-representation is alled momentum-representation.



46 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY2.2 The Postulates of Quantum TheoryFrom the analysis of the experiments in setion 1 (and many others) the followingrules may be abstrated. They are postulated to desribe the quantum world ingeneral. Table 2.1 summarizes these rules.(In the following the � ̂ � will be omitted, when it is lear that the objet isan operator.)2.3 Interpretation of Postulates: Requirements andimpliations1. The wave funtion ψ(~x, t) of a partile in the abstrat state |ψ(t)〉 is therepresentation of |ψ(t)〉 in the orthonormal position eigenbasis {| ~x〉| ~x ∈
R3}.

|ψ(t)〉 =

∫
d3x ψ(~x, t) | ~x〉 (basis expansion) (2.117)

ψ(~x, t) = 〈~x |ψ(t)〉 (position representation) (2.118)2. The operators ~̂x, ~̂p are hermitian operators, sine all their eigenvalues arereal.
~̂x | ~x1〉 = ~x1 | ~x1〉, ~̂p |~k〉 = ~~k |~k〉 (2.119)with
〈~x | ~x1〉 = δ3(~x− ~x1) (position representation). (2.120)

〈~x |~k〉 =
1√
2π

ei
~k~x (2.121)

~̂p = −i~ ~∇ (2.122)
⇒ −i~ ~∇ 1√

2π
ei
~k~x = ~k

ei
~k~x

√
2π

(2.123)



2.3. INTERPRETATION OF POSTULATES 47Classial mehanis Quantum mehanis1. Representation of the state of a partile at time t:Position and momentum: (~x(t), ~p (t)) Vetor |ψ(t)〉 in a multidimensionalvetor spae2. Physial observables and orrespondene priniple
ω = ω (~x, ~p) The independent variables ~x, ~p arerepresented by hermitian operators

~x→ ~̂x, ~p→ ~̂p .In position representation:
〈~x |~̂x| ~x′〉 = δ(~x− ~x′) ~x
〈~x |~̂p| ~x′〉 = δ(~x− ~x′) (−i~ ∂

∂~x
)Physial observables are funtionsof the operators ~x, ~p:

Ω̂ = Ω (~̂x, ~̂p) .Every observable is a hermitianoperator.3. The result of a measurement: Relation of theory to theexperimental observationPartile in state (~x, ~p) Partile in state |ψ〉
→ Measurement of ω yields ω (~x, ~p) → Measurement of the (hermitian)observable Ω̂ yields one of the (real)eigenvalues ω of Ω̂ with probability

P (ω) = |〈ω |ψ〉|2.
→ State (~x, ~p) remains unhanged → The state of the system hangesto the eigenstate |ω〉 orrespondingto the eigenvalue.4. Time evolution of a stateHamilton equations Shrödinger equation
∂~x
∂t

= ∂H
∂p

and ∂~p
∂t

= −∂H
∂~x

i~ ∂
∂t
|ψ(t)〉 = Ĥ |ψ(t)〉with Ĥ = H (~x→ ~̂x, ~p→ ~̂p)Table 2.1: Tabulated omparison of lassial and quantum mehanis



48 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY3. Probability densityNormalizability of the wave funtion (Hilbert spae).As a speial ase of postulate 3, a position measurement returns the eigen-value ~x with probability
|〈~x |ψ〉|2 = |ψ(~x, t)|2 = modules 2 of the wave (2.124)funtion

= probability density of �nding the (2.125)partile at ~x
⇒ ψ(~x, t)must be normalized. (2.126)a) For a partile in a �nite region of spae:
ψ(~x, t)→ 0 for |~x| → ∞ (2.127)and a square integrable wave funtion ψ(~x, t).
∫
d3x |ψ(~x, t)|2 = 1 or abstrat 〈ψ |ψ〉 = 1 (2.128)

|ψ|2

xFigure 2.7: Probability density of ψb) For a partile distributed over in�nite spae (e.g. plane wave):
ψ~k(~x, t) =

1√
2π

ei(
~k~x−Ek

~
t) (not square integrable) (2.129)We require the integrability ondition

∫
d3x ψ∗(~x′, t)ψ(~x, t) = δ(~x− ~x′). (2.130)Interpretation: ∞ partile number in a plane wave (see �gure2.8)



2.3. INTERPRETATION OF POSTULATES 49
xReψ(x, t)

|ψ|2 = 1√
2π

Figure 2.8: Plane waveDe�nition: A vetor spae whose vetors are either normal-ized to 1 (2.128) or to δ(~x − ~x′) (2.130) is alledHilbert spae.The spae of any physial states must be a Hilbert spae.4. The measurement proess, quantum realityMeasurement in quantum mehanis:The measurement apparatus is a quantum system with well de�ned eigen-states.Examples:
• Position measurement: Photo �lm

.
.
. .

. .
.
.Figure 2.9: ~x eigenstates on a photo �lm

• Veloity measurement: Wien �lterAfter the measurement the partile is in a well de�ned ~x or ~p eigenstate.The measurement apparatus is a projetor onto one of its eigenstates withprobability P.Mathematial desription of the measurement:



50 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY
−

+

~B

~E

e−
~v = c ·E/BFigure 2.10: Wien �ltera) Construt quantum operator (observable) orresponding to the mea-surement:

Ω̂ = Ω (~x→ ~̂x, ~p→ ~̂p) (2.131)b) Find the orthonormal eigenvetors |ωi〉 with eigenvalues ωi of Ω̂.) Prior to the measurement, the system is in a general state |ψ〉 whihan be expanded in the orthonormal eigenbasis of Ω̂ :
|ψ〉 =

∑

i

|ωi〉〈ωi |ψ〉 (2.132)This means that the system is in a superposition of eigenstates |ωi〉with the relative amplitudes 〈ωi |ψ〉 .d) The measurement apparatus projets the state |ψ〉 onto one of theeigenstates |ωm〉 of Ω̂ :
Pm = |ωm〉〈ωm| (2.133)

Pm|ψ〉 =
∑

i

|ωm〉〈ωm|ωi〉〈ωi |ψ〉 (2.134)
= |ωm〉〈ωm|ψ〉 (2.135)�ollapse�, �redution� of the stateAfter the projetion the state has a redued amplitude 〈ωm|ψ〉.The probability that the partile appears after projetion in eigenstate

|ωm〉, i.e. that value ωm is measured, is given by the intensity of theprojeted state,
P (ωm) = |〈ωm|ψ〉|2. (2.136)The state is hanged |ψ〉 → |ωm〉 by the measurement, unless it hasalready been in an eigenstate of Ω̂



2.3. INTERPRETATION OF POSTULATES 51Copenhagen interpretation:
• Prior to the measurement the system is in an unknown state |ψ〉.
• The outome of a single measurement is undeterministi. Only statis-tial preditions about the outome are possible.
• |ψ〉 annot, by priniple, be determined from a single measurement.Many measurements on equally prepared initial state to determinethe relative weights |〈ωi |ψ〉|2 of the expansion. Even then there isin general no unique proedure to determine 〈ωi |ψ〉, sine it has aomplex phase.Philosophial problems:- How is the distintion between system and measurement apparatus tobe made?- Is there physial reality without the observer? Causality?(→ Paradox: Shrödinger's at)- How does the projetion (state ollapse) work mirosopially? Inter-ation system ↔ measurement apparatus?Expetation value:Average value of the observable obtained in many measurements of the samequantity.
〈Ω〉 =

∑

i

P (ωi)ωi =
∑

i

|〈ωi |ψ〉|2ωi (2.137)5. Measurement of several observablesDi�erent observables (operators) do in general not ommute. The outomeof the measurement of 2 observables depends on the order of the projetions.Example:Consider the operators ~̂x, ~̂p and an ingoing plane wave |ψ〉.1. ~̂x~̂p|ψ〉 (see �gure 2.11)
PxPp|ψ〉 = Px| ~p〉〈~p |ψ〉 = | x〉〈x | p〉〈p |ψ〉 (2.138)



52 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY2. ~̂p~̂x|ψ〉 (see �gure 2.12)
PpPx|ψ〉 = Pp| ~x〉〈~x |ψ〉 = | p〉〈p | x〉〈x |ψ〉 (2.139)As it an be seen from the equations (2.139) and (2.138) these operatorsyield di�erent �nal states.
photon

~p-measurement: Compton
~pout
e−

position undetermineddetetor~x-measurement:photon
Figure 2.11: Undetermined position

~pout determined from reoil
photon ~pout Compton: ~pout

e−momentum undetermined
~x-measurement: slitFigure 2.12: Undetermined momentum

De�nition: Commutator
[A,B] := AB −BA (2.140)If [A,B] = 0 and A,B are hermitian operators, then there exists a ommon eigen-basis of A,B and the outome of the measurement is not dependent on the orderof the measurements.



2.4. THE HEISENBERG UNCERTAINTY RELATIONS 53Canonially onjugate operators:
~x, ~p = −i~ ∂

∂~x
and t, E = i~

∂

∂t
(2.141)One �nds for the ommutator of ~x and ~p:

[~x, ~p ]ψ(~x) = −i~
(
~x
∂

∂~x
ψ(~x)− ∂

∂~x
~xψ(~x)

) (2.142)
= −i~

(
~x
∂

∂~x
ψ(~x)− ψ(~x)− ~x ∂

∂~x
ψ(~x)

) (2.143)
= i~ ψ(~x) (2.144)Beause ψ(~x) is arbitrary, the ommutator reads

[~x, ~p ] = i~1 (2.145)and analogous to the previous alulation one an also show that
[t, E] = −i~1 (2.146)yields.2.4 The Heisenberg unertainty relationsStatistial treatment: Many measurements of the same quantity Ω̂on an equally prepared initial state |ψ〉.Expetation value: The average measured eigenvalue

〈Ω〉 =
∑

i P (ωi)ωi =
∑

i |〈ωi|ψ〉|2ωi = 〈ψ|Ω|ψ〉Standard deviation: ∆Ω =
√
〈ψ| (Ω− 〈Ω〉)2|ψ〉If |ψ〉 is not an eigenstate of Ω̂, then ∆Ω 6= 0, sine there is a distribution ofmeasured eigenvalues ωi.If we measure another observable Λ̂ with [Ω̂, Λ̂] 6= 0, then |ψ〉, in general, won'tbe an eigenstate of both Ω̂ and Λ̂. This may be possible in speial ases.Example: Plane wave 〈x |ψ〉 = 1√

2π
eikx



54 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYThe momentum p = ~k is �xed and the position x ompletely undetermined.Then Ω and Λ an not be predited simultaneously with arbitrary preision.Eah measurement still gives a sharp value, but varies for eah measurement.This statement is made quantitatively by the Heisenberg unertainty relations:For a given state |ψ〉 one �nds:
(∆Ω)2(∆Λ)2 = 〈ψ| (Ω− 〈Ω〉)2|ψ〉〈ψ| (Λ− 〈Λ〉)2|ψ〉 (2.147)

= 〈ψ| (∆Ω̂)2|ψ〉〈ψ| (∆Λ̂)2|ψ〉 (2.148)
= 〈∆Ω̂ψ|∆Ω̂ψ︸ ︷︷ ︸

|v1〉

〉〈∆Λ̂ψ|∆Λ̂ψ︸ ︷︷ ︸
|v2〉

〉 (2.149)Shwarz-inequality:
|〈v1 | v2〉| ≤ | |v1〉| · | |v2〉| =

√
〈v1 | v1〉 ·

√
〈v2 | v2〉 (2.150)The equality holds exatly when

| v2〉 = c | v1〉, c ∈ C. (2.151)
.

|v2||〉

|v2〉

|v1〉

||v2||〉| ≤ ||v2〉|Figure 2.13: Shwarz-inequality
(∆Ω)2(∆Λ)2 ≥ |〈∆Ω̂ψ|∆Λ̂ψ〉|2 (2.152)

= |〈ψ|∆Ω̂∆Λ̂|ψ〉|2 (2.153)with
∆Ω̂ ∆Λ̂ = 1

2
[(∆Ω̂ ∆Λ̂ + ∆Λ̂ ∆Ω̂) (2.154)

+(∆Ω̂ ∆Λ̂−∆Λ̂ ∆Ω̂)]

= 1
2

[∆Ω̂, ∆Λ̂]+ + 1
2

[∆Ω̂, ∆Λ̂] (2.155)



2.5. SCHRÖDINGER EQUATION 55one further obtains
(∆Ω)2(∆Λ)2 ≥ 1

4
〈ψ| [∆Ω̂, ∆Λ̂]+|ψ〉2︸ ︷︷ ︸

≥0

(2.156)
+1

4
〈ψ| [∆Ω̂, ∆Λ̂]︸ ︷︷ ︸

=i~1

|ψ〉2.LHS at least ≥ 1
4
〈ψ| [∆Ω̂,∆Λ̂] |ψ〉 for onjugated operators Ω,Λ.

∆Ω ·∆Λ ≥ 1
2

~ (2.157)Equation (2.157) is the unertainty relation for onjugated variables.Examples:
∆x ·∆p ≥ 1

2
~ (position-momentum unertainty)

∆t ·∆E ≥ 1

2
~ (time-energy unertainty) (2.158)Remarks:1. The equality holds exatly, if

• ∆Ω̂ = c ·∆Λ̂|ψ〉 (Shwarz inequality)
• 〈ψ|[∆Ω̂,∆Λ̂]+|ψ〉 = 02. If |ψ〉 happens to be an eigenstate of both ∆Ω̂ and ∆Λ̂, it follows that

∆Ω ·∆Λ = 0 even holds if [Ω̂,Λ] 6= 0.3. Minimum unertainty wave paket: ∆x ·∆p = 1
2
~

〈x |ψmin〉 = 1√
πσ2

e−
x2

σ2 ful�lls both requirements above.2.5 Shrödinger equation
i~

∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (2.159)Properties:



56 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYa) The Shrödinger equation is a linear (partial) di�erential equation. There-fore the superposition priniple holds.b) If H is time independent (stationary system), then the solution is separablein time
|ψ(t)〉 = |ψ〉 e−iE

~
t (2.160)and |ψx〉 obeys the stationary Shrödinger equation, where E is the energyof the partile,

E|ψ〉 = H|ψ〉 . (2.161)2.6 Partile density, urrent density and par-tile number onservationConsider a state |ψ〉 in position representation 〈~x |ψ〉 = ψ(~x, t).
|ψ(~x, t)|2 = ρ (~x, t) = probability of �nding a (2.162)partile at ~x, t

= partile density (2.163)We seek to derive a ontinuity equation for ρ (~x, t) and the urrent density
~j (~x, t) (see �gure 2.14).

dA

ρ

x x+ dxFigure 2.14: Illustration of the ontinuity equation
∂

∂t
(ρ · dx) dA = [jx (x, t)− jx (x+ dx, t)] dA (2.164)

∂

∂t
ρ+

∂

∂x
jx = 0 (2.165)



2.6. PARTICLE/CURRENT DENSITY AND NUMBER CONSERVATION 57In 3 dimensions one then obtains
∂ρ
∂t

+∇ ·~j = 0 . (2.166)Together with
∂

∂t
|ψ(~x, t)|2 = ψ∗(x, t)

(
∂

∂t
ψ(~x, t)

) (2.167)
+

(
∂

∂t
ψ∗(~x, t)

)
ψ(~x, t)

∂

∂t
ψ(~x, t) = − i

~

(
−~2∇2

2m
+ V (~x)

)
ψ(~x, t) (2.168)

∂

∂t
ψ∗(~x, t) =

i

~

(
−~2∇2

2m
+ V (~x)

)
ψ∗(~x, t) (2.169)one further �nds

∂

∂t
|ψ(~x, t)|2 = − ~

2mi

(
ψ∗(x, t)

[
∇2ψ(~x, t)

] (2.170)
−
[
∇2ψ∗(~x, t)

]
ψ(~x, t)

)

= −∇ ~

2mi
[ψ∗(∇ψ)− (∇ψ∗)ψ] (2.171)Partile urrent density:

~j =
~

2mi
[ψ∗(∇ψ)− (∇ψ∗)ψ]

ρ = |ψ(x, t)|2
∂ρ

∂t
+ ~∇ ·~j = 0

(2.172)
Example:For a wave with no amplitude modulation

ψ(x, t) = ei(
~k~x−ωkt) = ei(φ(~x)−ωkt) (2.173)one gets the urrent density

~j =
~

m
~∇φ(~x) · ρ(~x, t), (2.174)



58 CHAPTER 2. THE POSTULATES OF QUANTUM THEORYand for a plane wave
φ(~x) = ~k~x (2.175)furthermore
~j =

~~k

m
· ρ = ~v · ρ. (2.176)



Chapter 3
Simple Problems in 1 Dimension
3.1 Partile in a Box

L/20
x

1

1

2

2

∞∞

−L/2Figure 3.1: Partile in a box with in�nitly high wallsThe one-dimensional stationary Shrödinger equation in position represen-tation is given by the expression
[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x), (3.1)59



60 CHAPTER 3. SIMPLE PROBLEMS IN 1 DIMENSIONwith a potential V (x) here de�ned by:
V (x) =

{
0, |x| ≤ L/2

+∞, |x| > L/2
(3.2)Problems with pieewise onstant potential V (x) = V0 were solved by planewaves.Ansatz:

ψ(x) = ψ0e
ikx (3.3)with

E =
(~k)2

2m
− V0 (3.4)and

k = ±1

~

√
2m(E − V0) (3.5)

=





osillating solution︷ ︸︸ ︷
±1

~

√
2m(E − V0) , E > V0

± i
~

√
2m(V0 − E)

︸ ︷︷ ︸exp. deaying solution = i
~
κ , E < V0

(3.6)

Figure 3.2: Exponentially deaying solutionFor V0 →∞, κ→∞ it follows that ψ(x) = 0 for |x| > L/2.Mathing the boundary onditions at the boundaries of the box:Sine the Shrödinger equation is seond order in x,



3.2. POTENTIAL STEP: SCATTERING 61� ψ(x) is ontinuous and� ∂ψ[x]
∂x

an have a �nite jump at x = ±L/2, so that ∂2ψ
∂x2 ∼ δ(x ± L/2),ompensating V (x)ψ(x) ∼ δ(x± L/2).The boundary ondition therefore reads ψ(x = ±L/2) = 0. Sine thestationary Shrödinger equation is real, we an hoose ψ real. The systeminludes the symmetry of parity invariane, i.e.

[P,H ] = 0, P = ±1. (3.7)The real wave funtion is hosen to be
ψ(x) =

{
ψ0(e

ikx ± e−ikx), |x| ≤ L/2

0, |x| ≥ L/2
. (3.8)There exist two families of normalized solutions:

ψn(x) =





√
2
L

cos(kox), kon = (2n+1)π
L

n = 0, 1, 2, . . .√
2
L

sin(kex), ken = 2nπ
L

n = 0, 1, 2, . . .
(3.9)Observations:� Quantization of the eigenenergies E:The energy En is �xed by En = (~k

(e/o)
n )2

2m
. The quantization of theeigenenergies of bound states is indued by the boundary onditionthat the wave funtion has to vanish for |x| → ∞. This is a generalfeature of bound states. The eigenenergies of extended states (sat-tering states) are not quantized, but ontinuous.� Node theorem:The number of nodes (zeros) inreases by 1 with the prinipal quantumnumber n. This is a general feature. In 2 or 3 dimensions: node lines,node surfaes.3.2 Potential step: satteringConsider the Shrödinger equation

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ = Eψ (3.10)



62 CHAPTER 3. SIMPLE PROBLEMS IN 1 DIMENSIONwith a step potential (see �gure 3.3)
V (x) = V0Θ(x). (3.11)

I V0

0

II
x

Figure 3.3: Sattering at a potential stepSine V (x) is pieewise onstant, one gets plane wave or exponential solu-tions in the regions I, II.Inident wave: ψi(x) = ψ0e
i(kx−ωt), x < 0 (3.12)Re�eted wave: ψr(x) = rψ0e
i(−krx−ωt), x < 0 (3.13)Transmitted wave: ψt(x) = tψ0e
i(ktx−ωt), x > 0, (3.14)where ψ0 is set as ψ0 = 1/

√
2π and

E = ~ω > 0 (arbitrary, �xed) (3.15)
k =

1

~

√
2mE = kr (3.16)

kt =

{
1/~
√

2m(E − V0) , E > V0

i/~
√

2m(V0 −E) = iκt , E < V0

. (3.17)Boundary onditions at x = 0:



3.2. POTENTIAL STEP: SCATTERING 63Sine it is a �nite potential step, ψ′(0) must exist (ontinuous) and ψ′′(0)is disontinuous. One gets
ψi(0) + ψr(0) = ψt(0) ⇔ 1 + r = t (3.18)
ψ′
i(0) + ψ′

r(0) = ψ′
t(0) ⇔ ik(1− r) = iktt (3.19)and by that

r =
k − kt
k + kt

(re�etion amplitude) (3.20)
t = 1 + r =

2k

k + kt
(transmission amplitude). (3.21)In the following we will onsider two speial ases and will investigate thesolution's struture.1. E > V0: kt ∈ R

V0 > 0 : kt < k, r, t > 0No phase jump, sattering phase δ = 0

0 x

V0

ψt

ψr ψiFigure 3.4: Potential step sattering with E > V0 and V0 > 0

V0 < 0 : kt > k, r < 0, t > 0Re�eted wave has sattering phase δ = πPartile urrent:
ji =

~

2mi
(ψ∗

iψ
′
i − ψ′∗

i ψi) =
~k

m
|ψ0|2 (3.22)

jr = − ~k

m︸︷︷︸
vi

|r|2|ψ0|2 (3.23)
jt =

~kt
m︸︷︷︸
vt

|t|2|ψ0|2 (3.24)



64 CHAPTER 3. SIMPLE PROBLEMS IN 1 DIMENSION
V0

x

ψi

ψr

ψt

Figure 3.5: Potential step sattering with E > V0 and V0 < 0Current onservation:
ji + jr =

~k

m
(1− |r|2)|ψ0|2 =

~k

m

4kkt
(k + kt)2

|ψ0|2 (3.25)
jt =

~kt
m

4k2

(k + kt)2
|ψ0|2 = ji + jr (3.26)2. E < V0: kt = iκt, κt ∈ R

V0 > 0

xFigure 3.6: Potential step sattering with E < V0

|r|2 =

∣∣∣∣
k − iκt
k + iκt

∣∣∣∣
2

= 1 (3.27)
jr = −ji (3.28)

jt(x→ +∞) = 0 (3.29)Equation (3.28) says that all partiles are re�eted and equation (3.29)says that the wave funtion deays exponentially for x → ∞. Thepartiles penetrate into the barrier, whih is lassial forbidden, butdo not propagate.



3.3. PARTICLE IN A δ-POTENTIAL 653.3 Partile in a δ-PotentialThe Shrödinger equation with an attrative δ-potential
V (x) = +V0δ(x), V0 < 0 (3.30)is given by:
[
− ~2

2m

∂2

∂x2
+ V0δ(x)

]
ψ(x) = Eψ(x). (3.31)

+V0δ(x)

E0

x

∞Figure 3.7: Attrative δ-potentialThere exist two kinds of solutions, depending on x:1.) Plane wave or exponential solutions for x 6= 0:
ψ(x) = ψ0e

ikx with k = ±
√

2mE

~
(3.32)2.) Solution for x = 0:The potential term in the Shrödinger equation has a δ-singularity,whih must be ompensated by a singularity in ∂2ψ

∂x2 :
− ~2

2m
ψ′′(x) = −V0ψ(0)δ(x) + Eψ(x) (3.33)By integrating the Shrödinger equation over an in�nitesimal interval

[−ε, ε] one gets
− ~2

2m
[ψ′(ε)− ψ′(−ε)] = −V0ψ(0) + E

∫ +ε

−ε
dxψ(x)

︸ ︷︷ ︸
→0 for ε→0

. (3.34)



66 CHAPTER 3. SIMPLE PROBLEMS IN 1 DIMENSIONTherefore the �rst derivative has a jump at the origin:
ψ′(0†)− ψ′(0−) =

2mV0

~2
ψ(0) (3.35)Mathing boundary onditions:1. E < 0:

k = ±iκ = ±i
√
−2mE

~
(3.36)

ψ(x) =

{
ψ(0)e−κx , x > 0

ψ(0)e+κx , x < 0
(3.37)

ψ′(0†)− ψ′(0−) = ψ(0)(−2κ) =
2mV0

~2
ψ(0) (3.38)For

κ = −mV0

~2
> 0 (3.39)we get a deaying solution for |x| → ∞, i.e. a boundstate, whih onlyexists if the potential is attrative (V0 < 0). For

E0 = −(~κ)2

2m
= −mV

2
0

2
< 0 (3.40)the boundstate energy is disrete.2. E > 0: Propagating waves (sattering states)

k = ±
√

2mE

~
(3.41)

ψ(x) =

{
ψ0(e

ikx + re−ikx) , x < 0

ψ0te
ikx + 0 , x > 0

(3.42)Mathing the wave funtions at the position x = 0 one �nds
ψ(0†) = ψ(0−) ⇒ 1 + r = t, (3.43)and for the derivatives
ψ′(0†)− ψ′(0−) =

2mV0

~2
ψ(0) (3.44)

⇒ ik(1− r)− ikt =
2mV0

~2
t (3.45)

ik(1− r) = i(k − i2mV0

~2
)t. (3.46)



3.4. GENERAL THEOREMS IN ONE DIMENSION 67With t = 1 + r one �nally gets
r = − 1

1 + i ~2k
mV0

∈ C (3.47)
t = 1 + r =

i ~2k
mV0

1 + i ~2k
mV0

, k =
1

~

√
2mE (3.48)

|r|2 + |t|2 = 1. (3.49)Transmitted and sattered waves su�er a sattering phase shift:
|r|2 =

(
1 + (

~2

mV0
)2k2

)−1 (3.50)
|t|2 =

(
~2

mV0

)2

k2 ·
(

1 + (
~2

mV0

)2k2

)−1

, (3.51)with the phase shift
δr =

Re(r)Im(r)
=
mV0

~2k
< 0. (3.52)

E · 2~
2

mV 2

0

|r|2

|t|2

|r|2, |t|21
Figure 3.8: Absolute values of the transmission and re�etion amplitude
3.4 General theorems in one dimension1. Energy levels of bound states are always quantized. Propagating stateshave ontinuous spetrum.2. Node theorem:The number of zeros (nodes) of a wave funtion inreases neessivelywith the energy quantum number.



68 CHAPTER 3. SIMPLE PROBLEMS IN 1 DIMENSION3. There is no degeneray of energy eigenvalues in one dimension.Proof :Let ψ1, ψ2 be wave funtions with the same energy eigenvalues:
− ~2

2m

∂2ψ1

∂x2
+ V ψ1 = Eψ1 | · ψ2 (3.53)

− ~2

2m

∂2ψ2

∂x2
+ V ψ2 = Eψ2 | · ψ1 (3.54)Deriving the di�erene of the equations (3.53) and (3.54) one �nds:

ψ1
∂2ψ2

∂x2
− ψ2

∂2ψ1

∂x2
= 0 (3.55)

⇔ ∂

∂x
(ψ1

∂ψ2

∂x
− ψ2

∂ψ1

∂x
)

︸ ︷︷ ︸
=c

= 0 (3.56)Beause ψ1, ψ2 → 0 for x→∞ it follows that c has to vanish, i.e. c = 0.
1

ψ2
dψ2 =

1

ψ1
dψ1 (3.57)

⇒ logψ2 = logψ1 + d (3.58)
⇔ ψ2 = edψ1 equivalent (3.59)



Chapter 4
The Harmoni Osillator
The Hamiltonian operator for a partile moving in a harmoni potential isgiven by the expression:

H =
p2

2m
+ V (x) (4.1)with

V (x) = 1/2kx2 = 1/2mω2x2, (4.2)wherein ω is the eigenfrequeny, ω =
√
k/m. The importane of the har-moni osillator in theoretial physis omes lear onsidering the fats,that� it is one of the four exatly solvable systems.� it demonstrates, how a solution in quantum mehanis is performedby restriting wave funtions to physial Hilbert spae (normalizablewave funtion).� any bound problem an be represented as a harmoni osillator forsmall elongations. Deviations an be treated as perturbation.� it is even the starting point for quantization of �elds.69



70 CHAPTER 4. THE HARMONIC OSCILLATOR4.1 Solution in position representationStationary Shrödinger equation:
H|ψE〉 = E|ψE〉 (4.3)

⇔
(
− ~2

2m

∂2

∂x2
+ 1/2mω2x2

)
ψ(x) = Eψ(x) (4.4)The energy eigenvalues E of the harmoni osillator must be stritly posi-tive.Proof:Let |ψ〉 be an arbitrary eigenstate of H .

〈ψ|H|ψ〉 =
1

2m
〈ψ|P̂ 2|ψ〉+ 1/2mω2〈ψ|x̂2|ψ〉 (4.5)

=
1

2m
〈P̂ψ|P̂ψ〉+ 1/2mω2〈x̂ψ|x̂ψ〉 (4.6)

> 0 (4.7)In the seond step the hermitian property of x̂ and P̂ was used. |ψ〉 annotbe simultaneously eigenstate of p and x (unertainty relation).1. Dimensionless variables:Charateristi length and energy sales
( ∂2

∂x2
+

2m

~2
E − m2ω2

~2︸ ︷︷ ︸
1/b4

x2
)
ψ(x) = 0, (4.8)with the new de�ned length sale b, x = by.

b =
√

~

mω
, ε = E

~ω
(4.9)If the partial derivative is desribed by ψ′(y) = ∂ψ

∂y
et., one gets

ψ′′(y) + (2ε− y2)ψ(y) = 0 . (4.10)2. Selet physial solutions in Hilbert spae:Normalizable to 1 (bound states)



4.1. SOLUTION IN POSITION REPRESENTATION 71� y →∞:
ψ′′ = y2ψ (4.11)

⇒ ψ(y) = Ayme−y
2/2 (4.12)

m is an arbitrary but �nite power. In (4.12) the solution withpositive exponent was negleted, beause ψ(y) has to vanish ex-ponentiallly for y → ±∞.
ψ′′(y) = Ay2(ym +O(ym−2))e±y

2/2 (4.13)By negleting the seond term proportional to powers m− 2 of ywe found a solution of the di�erential equation (4.11).� y → 0:
ψ′′ + 2εψ = 0 (4.14)
⇒ ψ(y) = A cos(

√
2εy) +B sin(

√
2εy) (4.15)

= A+B
√

2ε︸ ︷︷ ︸
C

y +O(y) (4.16)Ansatz:
ψ(y) = u(y)e−y

2/2 (4.17)with
u(y) = A+ Cy for y → 0, (4.18)
u(y) = ym for �nitem and y →∞. (4.19)

u(y) must be a polynomial and of �nite order in m to be normalizable.Plugging this into (4.10) one gets:
ψ′(y) = u′e−y

2/2 − yue−y2/2 (4.20)
ψ′′(y) = u′′e−y

2/2 − 2yu′e−y
2/2 (4.21)

−ue−y2/2 + y2ue−y
2/2And by that

u′′ − 2yu′ + (2ε− 1)u = 0 . (4.22)3. Solution by a power series ansatz:
u(y) =

m∑

n=0

cny
n with m <∞ arbitrary (4.23)



72 CHAPTER 4. THE HARMONIC OSCILLATORPlugging this into equation (4.22) yields:
0 =

m∑

n=0

cn[n(n− 1)yn−2 − 2nyn

+(2ε− 1)yn] (4.24)
⇔ 0 =

m∑

n=0

[cn+2(n + 2)(n+ 1)

−(2n + 1− 2ε)cn]y
n (4.25)It is important to say that in equation (4.24) an index shift has beenmade. The sum of the seond derivative of u(y) starts at n = 2.Although it is possible to start the sum at n = 0 beause the fator

n(n−1) lets the �rst two oe�ients vanish. Equation (4.25) must beful�lled for all y so that we get the reursion relation
cn+2 = cn

2n+ 1− 2ε

(n+ 2)(n+ 1)
. (4.26)The power series u(y) breaks o� at �nite m, only if cn+2 = 0 for some

n, i.e
εn = n + 1/2 or En = (n + 1/2)~ω . (4.27)So the energy eigenvalues are quantized due to the normalization.Now the solutions an be determined by the reursion relation (y = x/b):
E0 = 1/2~ω ⇒ H0(y) = 1 (4.28)

E1 = (1 + 1/2)~ω ⇒ H1(y) = 2y (4.29)
E2 = (2 + 1/2)~ω ⇒ H2(y) = −2(1− 2y2) (4.30)
E3 = (3 + 1/2)~ω ⇒ H3(y) = −12(y − 2/3y3) (4.31)
E4 =... (4 + 1/2)~ω ⇒ H4(y) =... 12(1− 4y2 + 4/3y4) (4.32)The funtions Hn(y) = Hn(x/b) are alled Hermite polynomials.� The reursion generates only even or odd polynomials, i.e. eigenfun-tions of the parity operator P̂ : x 7→ −x, whih ommutes with H .



4.1. SOLUTION IN POSITION REPRESENTATION 73� The normalized eigenfuntions of the harmoni osillator read
ψn(x) =

(
mω

π~22n(n!)2

)1/4

e−
x2

2b2Hn(x/b) (4.33)with
b =

√
~

mω
. (4.34)The normalization onstant will be determined below.� From the algebrai solution results another reursion relation amongthe Hermite polynomials:

H ′
n(y) = 2nHn−1 (4.35)

Hn+1(y) = 2yHn − 2nHn−1 (4.36)� Orthonormality of eigenfuntions of Ĥ for di�erent n 6= n′:
∫ +∞

−∞
Hn(y)Hn′(y)e−y

2

dy = δnn′(
√
π2nn!) (4.37)with

dx =

√
~

mω
dy. (4.38)� Completeness:

∑
ψn(x)ψn(x

′) = δ(x− x′) (algebrai solution) (4.39)Example:Constrution of the Hermite polynomials and energies ε from the reursionrelation, whih was given by
cn+2 = cn

2n+ 1− 2ε

(n+ 2)(n+ 1)
. (4.40)� n=0:From the reursion relation (4.26) we get

c2 = c0
2 · 0 + 1− 2ε

2
= 0 (4.41)and we therefore obtain ε0 = 1/2. The oe�ient c0 is per onventionhosen to be 1. Altogether we yield for the �rst Hermite polynomialand the ground state energy:

H0(y) = 1, E0 = 1/2~ω. (4.42)



74 CHAPTER 4. THE HARMONIC OSCILLATOR� n=2:
c4 = c2

5− 2ε

12
= 0 (4.43)

⇒ ε2 =
5

2
(4.44)

c0 = 1 (4.45)
c2 = c0

1− 2ε

2
= 1 · 1− 2 · 5/2

2
= −2 (4.46)

⇒ H2(y) = −2(1− 2y2), E2 = 5/2~ω (4.47)The prefator −2 is onventional.� n = 4 :

c6 = c4
9− 2ε

30
= 0 (4.48)

⇒ ε4 = 9/2 (4.49)
c0 = 1 (4.50)
c2 = c0

1− 2ε

2
=

1− 2 · 9/2
2

= −4 (4.51)
c4 = c2

5− 2ε

12
= −4

5− 2 · 9/2
12

= 4/3 (4.52)
⇒ H4(y) = 12(1− 4y2 + 4/3y4), E4 = 9/2~ω (4.53)Again, the prefator 12 is onventional.� n = 1 :

c3 = c1
3− 2ε

6
= 0 (4.54)

⇒ ε1 = 3/2 (4.55)The oe�ient c1 is, as before for c0, per onvention hosen to be 1,so that we obtain
H1(y) = 2y, E1 = 3/2~ω. (4.56)� n = 3 :

c5 = c3
7− 2ε

20
= 0 (4.57)

⇒ ε3 = 7/2 (4.58)
c3 = c1

3− 2ε

6
=

3− 2 · 7/2
6

= −2/3 (4.59)
⇒ H3(y) = −12(y − 2/3y3), E3 = 7/2~ω (4.60)The prefator −12 is at least also here onventional.



4.1. SOLUTION IN POSITION REPRESENTATION 75Properties of the eigenvalue spetrum and the eigenfuntions:1. The energy eigenvalues En = (n + 1/2)~ω are quantized in units oflassial eigenfrequenies.2. The eigenvalue spetrum is equidistant. This leads to the interpreta-tion of energy quanta ~ω as �phonons�.3. All eigenvalues are stritly > 0, as shown initially. The Ground stateenergy, also alled �zero point energy�, is given by E0 = 1/2~ω. Thezero point energy greater than zero is a onsequene of the fat, that
|ψ〉n annot simultaneously be an eigenstate of p̂ and x̂.

〈ψ0|H|ψ0〉 = 〈ψ0|
(
p̂2

2m
+ 1/2mωx̂2

)
|ψ0〉 > 0 (4.61)The zero point energy has the following observable onsequenes:� Vauum �utuations, i.e. that the osillator even ontains energyin the ground state.� Spontaneous emission of light from an exited atom.4. The reursion relations generate only purely even or purely odd eigen-funtions Hn(y), i.e. the eigenfuntions of Ĥ are parity eigenfuntions.This has to be like that, sine the parity operator ommutes with Ĥ ,whih means that there must exist a simultaneous eigenbasis.5. Classial turning point of the osillator for a given energy En = (n +

1/2)~ω:
p2

2m
= 0 ⇒ En = 1/2mω2

(
xmax, lass)2 (4.62)

= (n+ 1/2)~ω (4.63)
⇔ xmax, lass =

√
n+ 1/2

√
2

√
~

mω︸ ︷︷ ︸
b

(4.64)
=
√

2n+ 1 · b (4.65)Solutions do not vanish for x > xmax, lass, but deay exponentially,
ψn(x) ∼ exp(− x2

2b2
) = exp

(
−(n + 1/2)

x2

x2lass.) . (4.66)
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0
xmax,lass.

xFigure 4.1: Classial and quantum mehanial solutions of the harmoni osillator
6. Classial limit:For n → ∞, the extension into the lassially forbidden region van-ishes. The wave funtion osillates faster and faster. The average
|ψn(x)|2 orresponds to the lassial expetation value. The lassiallimit will be onsidered in a separate hapter.

|ψ|2

x

lassialprobability

Figure 4.2: Probability density |ψ(x)|2 of a highly exited state



4.2. HARMONIC OSCILLATOR IN THE ENERGY EIGENBASIS: ALGEBRAIC SOLUTIONMETHOD774.2 Harmoni osillator in the energy eigenba-sis: Algebrai solution method
H =

1

2m
p̂2 +

1

2
mω2x̂2 (4.67)As will be seen below, for onstruting the eigenstate basis of H it is useful,if H an be written in the �fatorized� form

H = ~ωa†a + c̃1, (4.68)where a, c1 ∈ R are numbers and [a, a†] = c̃2 ∈ R, with a, a† dimensionless.We onstrut the appropriate operator a and its hermitian onjugate a† byompleting the square.
H = sum of squares of two operators p̂, x̂ (4.69)
a = αx̂+ iβp̂, α, β ∈ R (4.70)
a† = αx̂− iβp̂ (4.71)

[
a, a†

]
= −2iαβ[x̂, p̂] = +2αβ~ (4.72)

a†a = α2x̂2 + β2p̂2 + iαβx̂p̂− iαβp̂x̂ (4.73)
= α2x̂2 + β2p̂2 + iαβ[x̂, p̂] (4.74)
= α2x̂2 + β2p̂2 − ~αβ (4.75)

~ωa†a
!
=

p̂2

2m
+

1

2
mω2x̂2 − c̃1 (4.76)By omparison we obtain:

α2~ω =
1

2
mω2 ⇔ α =

√
mω

2~
=

1√
2b

(4.77)
β2~ω =

1

2m
⇔ β =

√
1

2m~ω
(4.78)

~αβ = c̃1 =
1

2
(4.79)



78 CHAPTER 4. THE HARMONIC OSCILLATORAnd hene:
a =

√
mω

2~
x̂+ i

√
1

2m~ω
p̂

a† =

√
mω

2~
x̂− i

√
1

2m~ω
p̂

H = ~ω

[
a†a +

1

2

]

[
a, a†

]
= 1

(4.80)
The term 1/2~ω in the Hamilton operator is the zero-point energy. Upto now we have just rewritten the original harmoni osillator hamiltonian
H in a fatorized form by �ompleting the square�, where the �fatorizing�operators a, a† have the anonial ommutation relation [a, a†] = 1. Notethat this is possible, preisely, beause� H is a quadrati form,� in the anonially onjugate operators x̂, p̂: [x̂, p̂] = i~,� with positive oe�ients,i.e. only for the harmoni osillator. The fatorization of H in terms ofanonial operators [a, a†] = 1 (real) makes the harmoni osillator uniqueand of entral importane for �eld quantization.Constrution of the eigenstates in terms of a, a†:However, we have not diagonalized H yet. The ruial insight is gainedby reognizing that the eigenstates |n〉 of the harmoni osillator an beonstruted from a, a†, using [a, a†] = 1:Let |n〉 be an eigenstate of H with the energy En = (n+ 1/2)~ω:

H|n〉 = En|n〉 (4.81)with
H = ~ω(a†a + 1/2). (4.82)



4.2. HARMONIC OSCILLATOR IN THE ENERGY EIGENBASIS: ALGEBRAIC SOLUTIONMETHOD79Then:
~ω(a†a+ 1/2)a†|n〉 = ~ωa†(a†a+ 3/2)|n〉 (4.83)

= ~ω(n+ 3/2)a†|n〉 (4.84)
= (En + ~ω︸ ︷︷ ︸

En+1

)a†|n〉 (4.85)
⇔ a†|n〉 = cn+1|n+ 1〉 (4.86)This is a not normalized eigenstate with energy

En+1 = En + ~ω = ~ω[(n+ 1) + 1/2]. (4.87)Analogously:
~ω(a†a+ 1/2)a|n〉 = ~ωa(a†a− 1/2)|n〉 (4.88)

= ~ω(n− 1/2)a|n〉 (4.89)
= En−1a|n〉 (4.90)

⇔ a|n〉 = c̃n|n− 1〉 (4.91)This is a not normalized eigenstate with energy En−1. Therefore a†, a arealled raising and lowering operators. Sine all eigenvalues of H are En > 0(see setion 4.1), the lowering hain must break o� at some n0:
a|n〉 = 0 (4.92)

~ω(a†a+ 1/2)|n0〉 = 1/2~ω|n0〉 (4.93)That means:
En0 = E0 (4.94)
|n0〉 = |n = 0〉 (4.95)The ground state |0〉 is annihilated by a. All exited states are generatedby a† ating repeatedly on |0〉.Proof:Consider any eigenstate |ñ〉 with eigenenergy Een, whih is not neessarilyontained in the family of eigenstates B = {(a†)n|0〉|n = 0, 1, 2, . . .}. It



80 CHAPTER 4. THE HARMONIC OSCILLATORan be lowered to a state of minimal energy, the ground state, by repeatedation of a. Sine the ground state is unique (e.g. no degeneray in d = 1),
|ñ〉 must be a member of B.Computation of the matrix elements of a, a† in the energy eigen-basis:

a|n〉 = cn|n− 1〉 (4.96)
〈n|a†a|n〉 = c∗ncn〈n− 1|n− 1︸ ︷︷ ︸

=1 (normalized)〉 = |cn|2 (4.97)
⇔ 〈n| H

~ω
− 1

2
|n〉 = |cn|2 (4.98)
⇔ n = |cn|2 (4.99)
⇔ cn =

√
neiΦ (usually de�ne Φ = 0) (4.100)The annihilation ondition

a|0〉 = 0 · | − 1〉 (4.101)is ful�lled. Now onsider the raising operator a†.
a†|n〉 = cn+1|n〉 (4.102)

〈n|aa†|n〉 = |cn+1|2 (4.103)
⇔ 〈n|1 + a†a|n〉 = |cn+1|2 (4.104)

⇔ 〈n|1 + (
H

~ω
− 1

2
)|n〉 = |cn+1|2 (4.105)

⇔ n+ 1 = |cn+1|2 (4.106)
⇔ cn+1 =

√
n+ 1eiΦ (4.107)

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√
n + 1|n+ 1〉

a†a|n〉 = n|n〉

(4.108)Rule: The fator under the square root is always the largerquantum number appearing in the equation.



4.2. HARMONIC OSCILLATOR IN THE ENERGY EIGENBASIS: ALGEBRAIC SOLUTIONMETHOD81Example:In the energy eigenbasis
|n〉 =




0...
0

1

0...



(4.109)
a =




0
√

1

0
√

2

0
√

3. . . . . .. . . . . .
0 0




(4.110)
a† =




0 0√
1 0 0√

2 0 0√
3 0 0. . . . . . . . .

0 0




(4.111)
The above relations enable us to alulate any physial expetation valueof an observable Ω in the osillator.

Ω = Ω(x̂, p̂) (de�ned as power series in x̂, p̂) (4.112)
x̂ =

√
~

2mω
(a+ a†) (4.113)

p̂ = i

√
mω~

2
(a† − a) (4.114)For example

〈n|x̂2|n〉, 〈n|p̂2|n〉. (4.115)Interpretation:The operators a, a† are due to their ation alled



82 CHAPTER 4. THE HARMONIC OSCILLATOR� ladder,� raising and lowering or� reation and annihilationoperators.
13/2

11/2

9/2

7/2

5/2

3/2

1/2 01234
56

a†
a†
a†
a†
a†
a† a

a

a

a

a

a

equidistantspetrum
nE/~ω

Figure 4.3: Visualization of the ladder operators
a† (a) inreases (redues) the exitation state of the system by one unit
~ω. It an be seen as adding (removing) one energy quantum ~ω to (from)the osillator. Therefore a† (a) are alled reation (destrution) operator ofan energy quantum ~ω of the osillator. The energy quantum ~ω is oftenalled �phonon�, in reminisene of the osillation like in a sound wave. Thisquantized energy paket an be interpreted as a partile - like photons inan eletromagneti wave (osillation). An osillator in exitation state n issaid to ontain n phonons.

N = a†a = phonon number operator (4.116)Outlook to �eld quantization:Consider a harmoni lattie like it is shown in �gure 4.4:The harmoni potential between neighboring lattie points reads
V (x0 . . . xN) =

N∑

i=0

1/2mω2(xi − xi+1 − xi−1)
2, (4.117)
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xi xi+1

m i i+ 1Figure 4.4: Harmoni lattiewith the periodi boundary onditions
−1 = N, N + 1 = 1. (4.118)The kineti term is given by
T =

N∑

i=0

1

2m
p2
i (4.119)and the Hamiltonian therefore by

H = T + V. (4.120)The system of oupled harmoni osillators an be deoupled by a trans-formation to normal modes. The energy quanta of the harmoni osillatorsrepresented by the normal modes are alled phonons in solid state physis.In this way the �eld of harmoni osillators (one osillator at eah lattiepoint) is quantized.Diret omputation of the harmoni osillator eigenfuntions inthe x basis (Hermite polynomials):1. Ground state: a|0〉 = 0

a =

√
mω

2~
x̂+ i

√
1

2mω~
p̂ (4.121)

=
1√
2
y + i

√
1

2mω~

(
−i~ d

dx

) (4.122)
=

1√
2
y + i

√
1

2mω~

(
−i
√
mω~

d

dy

) (4.123)
=

1√
2

(
y +

d

dy

) (4.124)
a† =

1√
2

(
y − d

dy

) (4.125)



84 CHAPTER 4. THE HARMONIC OSCILLATORIn position basis one gets a di�erential equation for ψ0:
(
y +

d

dy

)
Ψ0(y) = 0 (4.126)
⇔ dψ0

ψ0
= −y dy (4.127)

⇔ lnψ′
0|ψ0

ψ0
0

= −1/2y2 (4.128)
⇔ ψ0(y) = A0e

−y2/2 (4.129)
⇔ ψ0(x) = A0 exp

(
−mωx

2

2~

)
, (4.130)

with the normalization fator A0 of the Gaussian
A0 =

√
mω

π~

1/2

=
(mω
π~

)1/4

. (4.131)
2. All exited wave funtions an be generated from ψ0(x) by operating

(a†)n =
[

1√
2

(
y − d

dy

)]n on ψ0(y):
ψn(y) = An

[
1√
2

(
y − d

dy

)]n
ψ0(y), y =

x

b
(4.132)

The operator (y − d
dy

) generates the Hermite polynomials with theabove onventional prefators.3. Normalization fator An:
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1 =

∫
dxψ2

0(x) (4.133)
= A2

0

∫
dx e−

mω
~
x2

= A2
0

∫
dx e−

x2

b2 (4.134)
= A2

0

∫ +∞

−∞
dy

√
~

mω
e−y

2 (4.135)
= A2

0

√
~

mω

[∫ +∞

−∞

∫
dx dy e−(x2+y2)

]1/2 (4.136)
= A2

0

√
~

mω

[
2π

∫ ∞

0

dr re−r
2

]1/2 (4.137)
= A2

0

√
~

mω

[
2π

∫ ∞

0

dr

(
−1

2

d

dr
e−r

2

)]1/2 (4.138)
= A2

0

√
π~

mω
(4.139)

⇔ A0 =
(mω
π~

)1/4 (4.140)� n > 0:We know that the operator
1√
n!

(a†)n =
1√
n!

1√
2
n

[(
y − d

dy

)]n (4.141)ating on |0〉 generates the normalized eigenstates, and that (y − d
dy

)nby onvention generates Hn(y) (unnormalized).
An =

1√
n!

1

2n/2

(mω
π~

)1/4

=

(
mω

π~22n(n!)2

)1/4 (4.142)4. The reursion for Hn(y) an be ahieved from the a, a† algebra in asimilar way.4.3 Coherent statesWe now onstrut the eigenstates of the destrution operator a. Clearly,these states annot be energy eigenstates, unless the eigenvalue is the trivialone, sine a hanges the energy quantum number n. However, as we shallsee, the eigenstates of a are of importane, beause



86 CHAPTER 4. THE HARMONIC OSCILLATOR� their x, p expetation values obey the lassial motion.� they form wave pakets, whih do not run apart as time inreases (nodispersion).They are alled �oherent states� and are important in laser physis andquantum optis. Eigenstates of a:
a|ϕα〉 = α|ϕα〉, α ∈ C eigenvalue (a not hermitean!) (4.143)Expansion in energy eigenstates:
|ϕα〉 =

∞∑

n=0

ϕαn|n〉, (4.144)with:
ϕαn = 〈n|ϕα〉 (4.145)

=
1√
n!
〈0|an|ϕα〉 (4.146)

=
αn√
n!
〈0|ϕα〉 =

αn√
n!
ϕα0 (4.147)

⇒ |ϕα〉 = ϕα0

∞∑

n=0

αn√
n!
|n〉 (4.148)

= ϕα0

∞∑

n=0

(αa†)n

n!
|0〉 (4.149)

= ϕα0e
αa† |0〉 (4.150)The normalization yields:

1 = 〈ϕα|ϕα〉 = |ϕα0|2
∞∑

n=0

|α|2n
n!

= |ϕα0|2e|α|
2 (4.151)

⇔ |ϕα0| = e−|α|2/2, α ∈ C arbitrary. (4.152)Position representation of the oherent states; time evolution:
ψn(x, t) = 〈x|n〉 = ψn(x)e

−iEnt
~ , (4.153)the t-dependent energy eigenstates with eigenvalues

En = ~ω(n+ 1/2). (4.154)



4.3. COHERENT STATES 87Position representation of the oherent states:
ϕα(x, t) = 〈x|ϕα〉 (4.155)

= e−1/2|α|2
∞∑

n=0

αn√
n!
ψn(x)e

−iω(n+1/2)t (4.156)
= e−1/2|α|2

∞∑

n=0

α(t)︷ ︸︸ ︷
(αe−iωt)n√

n!
ψn(x)e

−iωt/2 (4.157)One obtains the oherent wave funtion
ϕα(x, t) = ϕα(t)(x)e

−iωt/2 (4.158)with
α(t) = α(0)e−iωt, α(0) = |α|eiδ (4.159)and the following properties:� the t-dependene is that of a t-dependent α(t) and a trivial phase e−iωt.The x expetation value of a partile in a state ϕα reads:

〈x〉 = 〈ϕα(t)|x|ϕα(t)〉 (4.160)
= 〈ϕα(t)|

b√
2
(a+ a†)|ϕα(t)〉, b =

√
~

mω
(4.161)

=
b√
2
(α(t) + α∗(t)) (4.162)

=
√

2b|α| cos(ωt− δ) (4.163)
= 〈x(t)〉 (4.164)� The x dependene is given by

|ϕα(x, t)|2 =
1√
πb

exp

(
−(x−

√
2|α|b cos(ωt− δ))2

b2

)
, (4.165)whih represents an osillating Gaussian wave paket without disper-sion and is therefore oherent.
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xFigure 4.5: Gaussian wave paket without dispersion



Chapter 5
Path integral formulation ofquantum theory
In this hapter we develop another formulation of the quantum theory,whih is equivalent to the Shrödinger formulation, but allows a more fun-damental understanding of the Shrödinger equation as well as of the or-retion to lassial mehanis.5.1 The propagator U(~x, t; ~x ′, 0)Sine the Shrödinger equation is of �rst order in time, its solution atany instant of time t, ψ(~x, t), is uniquely determined one the state, in xrepresentation the wave funtion, is �xed at a time t′, ψ(~x, t′ = 0). Withoutloss of generality we set t′ = 0 in the following. This an be expressedformally for H not expliitly t-dependent.

|ψ(t)〉 = e−
i
~
Ht|ψ(0)〉 (basis-free representation), (5.1)sine

i~
∂

∂t
|ψ(t)〉 = He−

i
~
Ht|ψ(0)〉 = H|ψ(t)〉 (Shrödinger equation). (5.2)The operator U(t) = e−

i
~
Ht depends only on the system H , not on theinitial ondition |ψ(0)〉. It is alled time evolution operator or propagatorof the system. 89



90CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUM THEORY� In energy representation:
{|n〉} basis of eigenstates of H with eigenvalues En

|ψ(t)〉 =
∑

n

e−
i
~
Ht|n〉〈n|ψ(0)〉 (5.3)

=
∑

n

|n〉〈n|ψ(0)〉e− i
~
Ent (5.4)

U(t) =
∑

n

|n〉〈n|e− i
~
Ent (5.5)� In position representation:

〈~x|ψ(t)〉 =

∫
d3x′ 〈~x|e− i

~
Ht|~x ′〉︸ ︷︷ ︸

U(~x,t;~x ′,0)

〈~x ′|ψ(0)〉 (5.6)
ψ(~x, t) =

∫
d3x′ U(~x, t; ~x ′, 0)ψ(~x ′, 0) (5.7)

U(t) = e−
i
~
Ht obeys the di�erential equation

i~
∂

∂t
U = HU, (5.8)i.e. the Shrödinger equation. However, it is an operator ating on Hilbertspae,not a vetor. All information about the system an be extrated from thepropagator U(t). Instead of solving the Shrödinger, one an formulate thequantum theory based on a diret alulation of the propagator, withoutresorting to the Shrödinger equation.5.2 Formulation of the path integralBased on very general onsiderations1 we develop the sheme how to alu-late U(~x, t; ~x ′, 0) in position representation:1. Interpretation of the propagator equation:

U(~x, t; ~x ′, 0) is the amplitude for �nding the partile at time t at ~x,1The formulation is based on the onept of a partile whih propagates from one positionto another aording to probability amplitudes, i.e. is in the spirit of the Copenhagen statis-tial interpretation of the quantum theory. However this formulation does not preassume aShrödinger equation or any other dynamial equation.



5.2. FORMULATION OF THE PATH INTEGRAL 91provided it has been (or will be) at time t′ = 0 at ~x ′. Sine ψ(~x ′, 0)is the amplitude that at t′ = 0 the partile has been at ~x ′, one mustintegrate the propagator equation over all possible ~x ′ in order to getthe total amplitude ψ(~x, t) of �nding the partile at (~x, t).
..
..

.
.

x′5

x′4

x′3

x′2

x′1

0 t

t

xx x′

ψ(x, t)

ψ(x′, 0)

U(x, t;x′1, 0)

Figure 5.1: Visualization of the propagator U between two states ψ(x′, 0) and
ψ(x, t) 2. Ansatz for U(~x, t; ~x ′, 0):How an we alulate this amplitude U(~x, t; ~x ′, 0), i.e. how doesthe partile move from (~x ′, 0) to (~x, t)? Without knowing anythingabout the dynamis, the minimal assumption is that the partile anmove on any path ~x(t) from (~x ′, 0) to (~x, t) with equal probability,

|W{~x(t̃)}|2 = 1. Then the only possible hoie for the amplitude
W{~x(t̃)} is a phase fator, W{~x(t̃)} = e−iφ{~x(t)}, and to get the totalamplitude U(~x, t; ~x ′, 0) we have to sum up all the amplitudes of paths
~x(t) whih begin at (~x ′, 0) and end at (~x, t):

U(~x, t; ~x ′, 0) = A
∑ paths~x(et)

~x(0)=~x ′

~x(t)=~x

e+iφ{~x(et)} , (5.9)where A is a normalization fator.3. Choie of the phase φ{~x(t̃)} attributed to a path ~x(t̃):The only known requirement on W{~x(t̃)} is that for a lassial par-tile (large mass, ation S ≫ ~) only the lassial path ~xl(t̃) shouldontribute to U(~x, t; ~x ′, 0). Therefore we hoose
W{~x(t̃)} = e+

i
~
S{~x(et)}, (5.10)
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0 t

t

x

x

x

x′

Figure 5.2:i.e. the ations of the path ~x(t̃) in units of ~. The weight fator
W is osillatory as a funtion of S. Contributions W from di�erentpaths have in general an arbitrary relative phase S/~ = φ{~x(t̃)}. Inthe summation over all paths the ontributions, therefore, anel eahother in general. However, for the lassial path xl(t) the ation isstationary (stationary phase)2:

δS{~x(t)}
∣∣∣∣∣
~x(t)=xl(t) = 0 (5.11)
S{~x, ~̇x} =

∫ t

0

dt̃ [
1

2
m~̇x2(t̃)− V (~x(t̃))] (5.12)Hene, only the ontributions from paths lose to the lassial path in-terfere onstrutively. The range of onstrutive interferene is roughly

|S{~x(t)} − S{~xl(t)}| ≤ π (region of oherene). (5.13)For large mass (or exitation energy), S varies rapidly as x(t) is variedfrom the lassial path xl(t), and in the limit S ≫ ~ (lassial limit)only the lassial path ontributes.Example: Free partile
xl(t) = vt, v =

x1

t1
(5.14)

x1(t) =
1

2
at2, a =

2x1

t21
(5.15)

x1(0) = xl(0) = 0 (5.16)
x1(t1) = xl(t1) = x1 (5.17)2From equation (5.11) one an obtain the Euler-Lagrange equations (→ variation priniple).
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Sl =

∫ t1

0

dt 1/2mẋ2
cl (5.18)

=

∫ t1

0

dt 1/2mv2 = 1/2m
x2

1

t1
(5.19)

S1 =

∫ t1

0

dt 1/2mẋ1
2 (5.20)

=

∫ t1

0

dt 1/2ma2t2 = 2/3m
x2

1

t1
> Sl (5.21)

⇒ S1 − Scl = 1/6m
x2

1

t1
(5.22)

≈ 1027~, (5.23)whih is valid for marosopi parameters. We have dedued thesheme to alulate the quantum mehanial time evolution operator,whih ontains the lassial Lagrangean formalism, δS = 0 for xl, in anatural way for S ≫ ~. This onstrution also o�ers an approximationsheme:
→ Quasilassial approximation
→ Expansion about xcl
→ Stationary phase approximation

t
t0x′

x

xl(t)
�tube�osillatory

Figure 5.3: �Tube� around xl(t) within whih S − Sl ≤ π

U(~x, t; ~x ′, 0) =
∫ x(t)=x
x(0)=x′

D{x(t̃)}e+ i
~
S{~x(et)} (5.24)



94CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUM THEORY5.3 Evaluation of the path integral for a freepartile: the measureWe restrit ourselves to the one-dimensional ase, i.e. d = 1. To performthe summation over the ontinuous set of all paths x(t), we �rst disretizethe paths into (N +1)−time slies of spaing ε = t
N
and evaluate the limits

N →∞ and ε→ 0 at the end of the alulation.
}

0 = t0 tN = t

x = xN

. . .

x0 = x′

ε. . .t2t1

tFigure 5.4: Disretizing the paths into (N + 1)−times slies of spaing ε
U(x, t; x′, 0) = lim

N→∞
AN

∫
dx1

∫
dx2

. . .

∫
dxN−1 exp

(
+
i

~
S{x(t)}

) (5.25)
=

∫
D{x(t)} e+ i

~
S{x(t)} (5.26)

S{x(t)} =

N−1∑

i=0

1/2m

(
xi+1 − xi

ε

)2

· ε (5.27)
−→

ε=dt→0

∫
dt 1/2m

(
dx

dt

)2

, (5.28)where x0 = x′ and xN = x are �xed under the path of the integral. Theintegrals over xi are quadrati and, hene, an be performed.



5.3. EVALUATION OF THE PATH INTEGRAL FOR A FREE PARTICLE: THEMEASURE95Substitute dimensionless integration variables:
yi =

√
m

2~ε
xi, i = 1, . . . , N − 1 (5.29)

U(x, t; x′, 0) = lim
N→∞

AN

(
2~ε

m

)(N−1)/2 ∫
dy1 . . .

×
∫
dyN−1 exp

(
i

N−1∑

i=0

(yi+1 − yi)2

) (5.30)The integration over y1 yields:
∫
dy1 exp

(
−1

i

[
(y1 − y0)

2 + (y2 − y1)
2
]) (5.31)

=

∫
dy1 exp

(
−1

i

[
2

(
y1 −

y0 + y2

2

)2

+
1

2
(y2 − y0)

2

]) (5.32)
=

√
iπ

2
exp

(
−1

i

(y2 − y0)
2

2

) (5.33)The Gaussian form is reprodued, with y1 removed and an additional fator
1
2
. Moreover the integration over y2 gives:

(
iπ

2

)1/2 ∫
dy2 exp

(
− 1

i
[1/2(y2 − y0)

2 + (y3 − y2)
2]
) (5.34)

=

(
iπ

2

)1/2(
2πi

3

)1/2

exp

(
−1

i

(y3 − y0)
2

3

) (5.35)
=

√
(iπ)2

3
exp

(
−1

i

(y3 − y0)
2

3

) (5.36)Performing all N − 1 integrals �nally gives:
U(x, t; x′, 0) = lim

N→∞
AN

(
2~ε

m

)N−1
2
(

(iπ)N−1

N

)1/2

× exp

(
−1

i
(yN − y0)

2/N

) (5.37)
= lim

N→∞
AN

(
2π~εi

m

)N
2 ( m

2πi~Nε

)1/2

× exp
(
i
m

2~Nε
(x− x1)

2
) (5.38)



96CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUM THEORYTo get a well-de�ned result forN →∞ and ε = t/N → 0 the N-dependenemust be aneled by the fator AN ((t/N)N −→
N→∞

1).Normalization:
AN =

( m

2π~εi

)N
2

=:
1

BN
(5.39)This de�nes the measure of the path integral, whih regularizes the �volume�assoiated with the in�nitesimal spaing ε between the time slies:

∫
D{x(t̃)} = lim

N→∞
ε=t/N

1

B

∫ +∞

−∞

dx1

B

∫ +∞

−∞

dx2

B
. . .

∫ +∞

−∞

dxN−1

B
, (5.40)with

B =

√
2π~εi

m
. (5.41)The summation over all paths yields a path integral. The summation overfuntions gives, in general, a funtional integral.5.4 Equivalene to the Shrödinger equationIn this setion the Shrödinger equation will be derived from the path in-tegral formulation.Analogies:Classial Newton formalism ↔ Lagrange formalismLoal in t Integral in tDi�erential equation Least ation prinipleQuantum mehanial Shrödinger formalism ↔ Feynman formalism



5.4. EQUIVALENCE TO THE SCHRÖDINGER EQUATION 97� Shrödinger formalism:In�nitesimal time evolution (ε = dt),
|ψ(ε)〉 − |ψ(0)〉 =

−iε
~
H|ψ(0)〉+O(ε2), (5.42)and in x representation:

ψ(x, ε)− ψ(x, 0) =
−iε
~

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, 0)

+O(ε2). (5.43)� Feynman formalism:
ψ(x, ε) =

∫
dx′ U(x, ε; x′, 0)ψ(x′, 0) (5.44)

U(x, ε; x′, 0) =

∫
D{x(t)} exp

(
+
i

~

∫ ε

0

dt′
[
1

2
mẋ2 −V (x)]

) (5.45)
=

( m

2π~iε

)1/2
∫
dx′ exp

( i
~

[1
2
m

(
x− x′
ε

)2

− V
(
x+ x′

2

)]
ε
)

O(ε) : No intermediate time slies (5.46)
ψ(x, ε) =

( m

2π~iε

)1/2
∫ +∞

−∞
dx′ exp

(
i
m

2~ε
(x− x′)2

)

× exp

(
− i

~
εV

(
x+ x′

2

))
ψ(x′, 0) (5.47)

=
( m

2π~iε

)1/2
∫ +∞

−∞
dx′ exp

(
i
m

2~ε
y2
)

× exp

(
− i

~
εV

(
x+ x′

2

))
ψ(x′, 0) (5.48)

=
( m

2π~iε

)1/2
∫ +∞

−∞
dy exp

(
i
m

2~ε
y2
)

× exp

(
− i

~
εV (x+ y/2)

)
ψ(x+ y, 0) (5.49)In the limit ε→ 0 the fator exp

(
i m
2~ε
y2
) osillates in�nitely rapidly as a funtionof y so that only the stationary point y = 0 ontributes to the integral ∫ +∞

−∞ dy .All other fators vary slowly as a funtion of y.



98CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUM THEORYExpand around y = 0 (�in�nitesimal propagation�):
ψ(x+ y, 0) = ψ(x, 0) +

∂ψ

∂x

∣∣∣∣
x

y + 1/2
∂2ψ

∂x2

∣∣∣∣
x

y2 +O(y3) (5.50)
e−

i
~
εV (x+y/2) = 1− iε

~
V (x) +O(εy) (5.51)The term O(εy) is of higher order than linear in ε and is therefore negleted.Then one obtains:

ψ(x, ε) =
( m

2π~iε

)1/2
∫ +∞

−∞
dy exp

(
− m

2~iε
y2
) [
ψ(x, 0)

−iε
~
V (x)ψ(x, 0) +

∂ψ

∂x

∣∣∣∣
x

y + 1/2
∂2ψ

∂x2

∣∣∣∣
x

y2
] (5.52)with

∫ +∞

−∞
dx e−ax

2

=

√
π

a
(5.53)

∫ +∞

−∞
dx x2e−ax

2

= − ∂

∂a

∫ +∞

−∞
dx e−ax

2

=
1

2a

√
π

a
(5.54)it follows

ψ(x, ε) =
( m

2π~iε

)1/2 [(2π~iε

m

)1/2

ψ(x, 0) +
~iε

2m

(
2π~iε

m

)1/2
∂2ψ

∂x2

]

−
( m

2π~iε

)1/2
[
iε

~

(
2π~iε

m

)1/2

V (x)ψ(x, 0)

] (5.55)
ψ(x, ε)− ψ(x, 0) = −iε

~

[
− ~2

2m

∂2

∂x2
ψ(x, 0) + V (x)ψ(x, 0)

] (5.56)In the limit ε→ 0 one �nally gets
i~ ∂

∂t
ψ(x, t)

∣∣∣
t=0

=
[
− ~2

2m
∂2

∂x2 + V (x)
]
ψ(x, t)

∣∣∣
t=0

. (5.57)Thus, the Feynman path integral formulation reprodues the Shrödinger equa-tion. It ontains naturally the lassial limit for the ation S ≫ ~.



5.5. THE CLASSICAL LIMIT 995.5 The lassial limitThe path integral representation of the propagator U had been onstruted suhthat for marosopi partiles only the lassial path ~xl(t) ontributes:
U(~x, t; ~x ′, 0) =

∫ ~x(t)=~x

~x(0)=~x ′

D{~x(t)}e i
~
S{~x(t)}, (5.58)with the ation funtional

S{~x(t)} =

∫ t

0

dt′
(

1

2
m~̇x(t′)2 − V (~x(t′))

)
. (5.59)What is the meaning of marosopi in this ontext?Let V (~x) be a potential whih varies on a harateristi length sale x0. If wevary the path ~x → ~x(t) + δ~x(t), and take |δ~x(t)| ≪ x0 for all times t, then thepotential term does not ontribute to the variation of the ation, and we have

δS{~x(t)} =

∫ t

0

dt′ [m~̇x(t′) · δ~̇x(t′)− ~∇V (~x) · δ~x(t′)] (5.60)
= −

∫ t

0

dt′ [m~̈x(t′) + ~∇V (~x)] · δ~x(t′) +O(δx2), (5.61)where in the seond step a partial integration was done. The �oherene region�is δS/~ < π, i.e. for larger variations, δS/~ > π, there is for eah path ~x(t) avariation ~x(t) + δ~x(t) suh that the ontributions from the two paths interferedestrutively, so that the integral over all those paths vanishes. The onditionfor this to happen for a given variation δ~x(t) is
δS > π~ (5.62)or, negleting the potential term in δS,
m >

π~∣∣∣
∫ t
0
dt′ ~̈x(t) cot δ~x(t)

∣∣∣
, (5.63)i.e. for �large enough� mass. There is only one exeption to this anelation ofpath ontributions, namely when for an in�nitesimal variation δ~x(t) the ationdoes not hange at all. This means, that for

m >
π~∣∣∣

∫ t
0
dt′ ~̈x(t)δ~x(t)

∣∣∣
(5.64)



100CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUMTHEORYonly that path ontributes for whih δS = 0. This is the priniple of stationaryation of lassial mehanis, whih from above yields the Euler-Lagrange (orNewtonian) equations of motion,
m~̈x = −~∇V (~x) = ~F . (5.65)Remarks:1. The ondition (5.63) does not set a �xed boundary on the mass m. Rather,it depends on the motion (~̈x) and on the duration t for whih the partileis observed! The larger t, the more quantum e�ets ome into play for agiven m. For realisti t, ~̈x and m & 1g, quantum e�ets never play a role.Note that ~̈x = 0 is not possible for all variations of the path. After longenough time, any partile beomes quantum mehanial (spread of wavefuntions), if phase oherene is preserved for all t.2. Does the ondition δS = 0 with given start and end points of ~x(t) selet aunique path?The deterministi nature of lassial mehanis tells us: in general yes!There are, however, exeptions to this rule in quantum systems whih haveno lassial analogy. These are spin systems, whih will be onsidered later.The Ehrenfest TheoremHow does the lassial motion of a partile emerge from quantum mehanis indetail?We expet that in the lassial limit the quantum mehanial unertainties inmeasurements vanish and that eah measurement of an observable Ω yields thesame value, whih must then be equal to the quantum mehanial expetationvalue. Therefore, we onsider the time evolution of the quantum mehanialexpetation value:
〈Ω〉 = 〈ψ|Ω|ψ〉 (5.66)

d

dt
〈Ω〉 = 〈ψ̇|Ω|ψ〉+ 〈ψ|Ω|ψ̇〉+ 〈ψ|Ω̇|ψ〉 (5.67)with

|ψ̇〉 = − i
~
H|ψ〉 (5.68)
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〈ψ̇| = +

i

~
〈ψ|H (5.69)it follows

d

dt
〈Ω〉 = − i

~
〈ψ|(ΩH −HΩ)|ψ〉+ 〈ψ|Ω̇|ψ〉. (5.70)And by that:

d

dt
〈Ω〉 = − i

~
〈[Ω, H ]〉+

〈
∂Ω

∂t

〉 Ehrenfest theorem (5.71)The quantum mehanial expetation value evolves in time aording to an equa-tion of motion analogous to the lassial equation of motion, with
{Ω, H} −→ − i

~
[Ω, H ]. (5.72)Reminder:1. Expetation value of Ω in state |ψ〉:

〈Ω〉 = 〈ψ|Ω|ψ〉 (5.73)Let {|n〉} be an eigenbasis of Ω.
Ω|n〉 = ωn|n〉 (5.74)
|ψ〉 =

∑

n

an|n〉 (5.75)
an = ontribution of |n〉 to |ψ〉 (5.76)

= amplitude that a partile preparedin state |ψ〉 is found in an eigenstate
|n〉 of Ω (5.77)

⇒ 〈ψ|Ω|ψ〉 =
∑

n

〈n||an|2ωn|n〉 (5.78)
=

∑

n

|an|2ωn (5.79)
= average value of ωn's, weighted with theprobabilities |an|2 to �nd the partile instate |n〉. (5.80)



102CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUMTHEORY2. Classial motion of a variable Ω:
Ω = Ω(~x, ~p, t) (5.81)With the Hamilton equations of motion,
~̇x = +

∂H

∂~p
, ~̇p = −∂H

∂~x
, (5.82)one gets

d

dt
Ω =

∂Ω

∂~x
~̇x+

∂Ω

∂~p
~̇p+

∂Ω

∂t
(5.83)

=
∂Ω

∂~x

∂H

∂~p
− ∂Ω

∂~p

∂H

~x
+
∂Ω

∂t
(5.84)

= {Ω, H}+
∂Ω

∂t
, (5.85)where {. , .} denotes the Poisson brakets.To obtain a (lassial) equation of motion for 〈Ω〉, d

dt
〈Ω〉 must be related to afuntion of 〈Ω〉 itself, i.e.

d

dt
〈Ω〉 = {〈Ω〉, 〈H〉}+ 〈Ω̇〉 . (5.86)In ontrast, the Ehrenfest theorem relates d

dt
〈Ω〉 to an expetation value of afuntion of Ω, 〈[Ω, H ]〉, whih is in general not equivalent. The lassial equationof motion for 〈Ω〉 will be obtained in the lassial limit. To see this, we onsider

Ω = ~x and Ω = ~p, sine any observable an be onstruted from ~x, ~p.
〈~̇x〉 = − i

~
〈[~x,H ]〉 with H =

~p 2

2m
+ V (~x) (5.87)

= − i
~
〈[~x, ~p

2

2m
]〉 (5.88)With

[~x, ~p 2] = ~p[~x, ~p] + [~x, ~p]~p (5.89)
= 2i~~p (5.90)one obtains

〈~̇x〉 =
〈~p〉
m

=

〈
∂H

∂~p

〉
. (5.91)



5.5. THE CLASSICAL LIMIT 103Analogous, the alulation for 〈~̇p〉 yields:
〈~̇p〉 = − i

~
〈[~p,H ]〉 = − i

~
〈[~p, V ]〉 (5.92)

= − i
~
〈(−i~)

∂V

∂~x
〉 = −

〈
∂H

∂~x

〉 (5.93)These equations are similar to the Hamilton equations of motion, but to obtainthe lassial Hamilton equations, we must have
〈
∂H

∂~p

〉
=
∂〈H〉
∂〈~p〉 and 〈

∂H

∂~x

〉
=
∂〈H〉
∂〈~x〉 . (5.94)If H is a quadrati form of ~p, ~x only, then these relations hold always.Proof: Compute ∂〈p2〉/∂〈p〉We have

〈(p− 〈p〉)2〉 = 〈(p2 − 2p〈p〉+ 〈p〉2〉 (5.95)
= 〈p2〉 − 〈p〉2 (5.96)

⇒ ∂〈p2〉
∂〈p〉 =

∂〈(p− 〈p〉)2〉
∂〈p〉 +

∂〈p〉2
∂〈p〉 (5.97)

= 2 〈(p− 〈p〉)(− ∂〈p〉
∂〈p〉︸︷︷︸
=1

)〉

︸ ︷︷ ︸
=0

+2〈~p〉 (5.98)
=

〈
∂~p 2

∂~p

〉
, (5.99)and analogous

∂〈~x 2〉
∂〈~x〉 = 2〈~x〉 =

〈
∂~x 2

∂~x

〉
. (5.100)In general, H is not a quadrati form of ~x. In this ase, we expand the expetationvalue of the gradient of the potential appearing in the equation of motion around



104CHAPTER 5. PATH INTEGRAL FORMULATION OFQUANTUMTHEORYthe expetation value of ~x.
〈
∂H

∂~x

〉
= 〈~∇V (~x)〉 =: 〈V ′(~x)〉 (5.101)

V ′(~x) = V ′(〈~x〉) +
∂

∂〈~x〉V
′(〈~x〉)(~x− 〈~x〉) (5.102)

=
∂

∂〈~x〉V (〈~x〉) +
1

2

∑

i,j

∂

∂〈xi〉
∂

∂〈xj〉
V ′(〈~x〉)

(xi − 〈xi〉)(xj − 〈xj〉) + . . . , (5.103)where
~x = (x1, x2, x3)

T . (5.104)Hene we obtain the equations of motion for the expetation values
∂

∂t
〈~x〉 =

∂〈H〉
∂〈~p〉 , (5.105)whih is always valid exatly, sine H ∼ ~p 2, and.

∂

∂t
〈~p〉 = −

〈
∂V

∂~x

〉 (5.106)
= −∂V (〈~x〉)

∂〈~x〉 −
∂V (〈~x〉)
∂〈~x〉 〈(~x− 〈~x〉)〉︸ ︷︷ ︸

=0

−1

2

∑

i,j

∂2V ′(〈~x〉)
∂〈~xi〉∂〈~xj〉

〈(xi − 〈xi〉)(xj − 〈xj〉)〉. (5.107)The seond derivative appearing in equation (5.107) is the urvature of the las-sial fore.Disussion of the 2nd equation:
• The �rst term,

−∂〈V (〈~x〉)〉
∂〈~x〉 ≡ −∂V (〈~x〉)

∂〈~x〉 , (5.108)is just the lassial fore ating on a partile at position 〈~x〉. It reproduesthe lassial Newton equation of motion.
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• The seond equals zero, sine 〈(~x− 〈~x〉)〉 = 0.
• The third and higher terms give quantum orretions to the lassial limit.They originate from the fat that the wave funtion is spread out in spae:

〈(xi − 〈~xi〉)(xj − 〈~xj〉)〉 6= 0 (5.109)This gives a riterion, when the lassial approximation beomes exat:When the spreading of the wave funtion is small ompared to the saleon whih the fore F = −~∇〈~x〉V (〈~x〉) varies, so that the quantum mehan-ial position unertainty beomes irrelevant (→ WKB approximation).
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Chapter 6
Symmetries and Conservation Laws
De�nition: SymmetryA symmetry is a unitary transformation of the Hamilton operator H whih leaves
H (or the Shrödinger equation) invariant1.We then say, the system is symmetri or invariant under a ertain transformation.6.1 Continuous symmetriesReminder: Classial mehanisLet g(~x, ~p) be a ontinuous funtion of ~x, ~p. It thus generates a anonial trans-formation of H(~x, ~p):An in�nitesimal anonial transformation, whih leaves the equations of motionform invariant, reads:

~x −→ ~x ′ = ~x+ ε
∂g

∂~p
=: ~x+ δ~x (6.1)

~p −→ ~p ′ = ~p− ε∂g
∂~x

=: ~p+ δ~p, (6.2)1In lassial mehanis a symmetry is a anonial transformation whih leaves the Hamiltonfuntion invariant. 107



108 CHAPTER 6. SYMMETRIES AND CONSERVATION LAWSwith ε→ 0. The Hamiltonian H is then invariant under this in�nitesimal trans-formation.
0 = δH =

∂H

∂~x

(
∂g

∂~p
· ε
)
− ∂H

∂~p

(
∂g

∂~x
· ε
) (6.3)

= −{g,H}ε (6.4)
⇒ dg

dt
=

∂g

∂t
= 0 (6.5)Sine g is not expliitly time dependent, g is therefore onserved.Quantum mehanial treatment of symmetriesGeneral de�nitions:A symmetry must be a unitary transformation ating on the states of Hilbertspae and on the Hamiltonian in order to onserve the normalization of a state

|ψ〉.
|ψ〉 → U |ψ〉 (6.6)
H → UHU−1, U †U = 1 (6.7)Then U an be written in the form
U = e−iαG =

∑

n

1

n!
(−iαG)n , (6.8)where G is hermitean and α ∈ R is a ontinuous parameter.The generator G of the transformationThe (in�nite) set of transformations U de�ned in this way forms a group, alledLie group L. This implies an algebra struture for the generators G. The algebrais de�ned by the ommutators [Gi, Gj]. If the U 's leave the Hamilton operatorinvariant, L is alled a symmetry group of the Hamiltonian.Consequenes of symmetry groupsSine in quantum mehanis a physial observable G (e.g. ~x) does, in general,not have a uniquely de�ned value, we must formulate the onservation laws interms of the time independene of the orresponding expetation value 〈ψ|G|ψ〉



6.1. CONTINUOUS SYMMETRIES 109with respet to an arbitrary state |ψ〉.Theorem: (Quantum analogy of Noether theorem)If G is a generator of a symmetry group of the Hamiltonian
U = e−iαG, UHU−1 = H, (6.9)then G is a onserved quantity, i.e. 〈ψ|G|ψ〉 is onserved for arbitrary |ψ〉.Proof: Let α be in�nitesimal so that we an expand U as
U = 1− iαG+O(α2). (6.10)Sine H is invariant under the transformation U (6.9), we yield

H = (1− iαG)H(1 + iαG) (6.11)
= H − iαGH + iαHG (6.12)
= H − iα[G,H ] (6.13)

⇔ [G,H ] = 0 (6.14)And by that we �nally get
d

dt
〈ψ|G|ψ〉 = − i

~
〈ψ|[G,H ]|ψ〉 = 0, ∀ |ψ〉, (6.15)where the Ehrenfest theorem was used.Lemma:One an �nd a simultaneous eigenbasis of the Hamiltonian H and of the genera-tor G of a symmetry of H , sine [G,H ] = 0.The symmetry analysis is useful, sine eigenstates of G are often easier to �ndthan those of H2.2Reminder: For ommuting operators, [G,H ] = 0, there exists a simultaneous eigenbasis,where G and H are hermitean operators.



110 CHAPTER 6. SYMMETRIES AND CONSERVATION LAWSProof:Let |ψ〉 be an arbitrary eigenvetor of G with eigenvalue λ, i.e.
G|ψ〉 = λ|ψ〉. (6.16)One then obtains
GH|ψ〉 = HG|ψ〉 = λH|ψ〉, (6.17)whih means that |ψ̃〉 ≡ H|ψ〉 is eigenvetor of G with the same eigenvalue λ.1. If λ is non-degenerate, i.e. 2 linearly independent eigenvetors of G withthe same eigenvalue λ do not exist, then

|ψ̃〉 = E|ψ〉 , E ∈ C. (6.18)where |ψ̃〉 is proportional to |ψ〉. Furthermore |ψ〉 eigenvetor of H, beause
H|ψ〉 ≡ |ψ̃〉 = E|ψ〉. (6.19)2. If λ is m-fold degenerate, then

• there exists a subspae Vλ with basis {|ψ1〉, . . . , |ψm〉} of eigenstatesof G with eigenvalues λ.
• Vλ is losed with respet to H , i.e.

|ψ〉 ∈ Vλ ⇒ H|ψ〉 = |ψ̃〉 ∈ Vλ. (6.20)Find an eigenbasis of H in the eigenvetor spae Vλ of G.The question now is how to obtain the onserved generator of a symmetry. Someimportant examples are given in the following subsetions.



6.1. CONTINUOUS SYMMETRIES 111
ψ(x, t)

00 ∆x x

ψ(x−∆x, t)

x

U

Figure 6.1: Propagation of a wave paket6.1.1 Translation invariane in position spae
• For simpliity we �rst onsider the ase d = 1:

Uψ(x, t) = ψ(x−∆x, t)

=

∞∑

n=0

1

n!

∂nψ

∂xn

∣∣∣∣
x

∆xn

=
∞∑

n=0

1

n!

(
−∆x

∂

∂x

)n
ψ(x)

= exp

(
−i∆x

(
−i ∂
∂x

))
ψ(x, t)

Ux ≡ e−i∆xGx ,whih is equivalent to
Gx = −i ∂

∂x
= px

~
. (6.21)Therefore the momentum operator is the generator of the translation group.

• Now onsider the ase d = 3:
Gxj

=
pj
~
, j = x, y, z (6.22)

[pj, pk] = 0 (ommutative group) (6.23)The general translation operator then reads
U = UxUyUz (= UyUxUz et.) (6.24)

= e−i∆x
Px
~ e−i∆y

py
~ e−i∆z

pz
~ (6.25)

= e−i∆~x
~p
~ (6.26)



112 CHAPTER 6. SYMMETRIES AND CONSERVATION LAWSIt follows from the quantum Noether theorem that in a translationally invariantsystem the momentum is onserved, i.e. the momentum expetation value 〈~p〉 isonserved for any state evolving aording to the (time-dependent) Shrödingerequation.6.1.2 Time translation invariane
Uψ(x, t) = ψ(x, t−∆t) (6.27)The generator of the temporal translation is, in analogy,
Gt = −i ∂

∂t
= −Ê

~
. (6.28)if H is not expliitly time dependent, the energy is onserved.6.1.3 Internal ontinuous symmetries: gauge invarianeThese symmetries have no analogon in lassial physis! We onsider �rst aglobal (x, t independent) phase transformation of a wave funtion, a U(1) gaugetransformation,

Uψ(~x, t) = e−iφψ(~x, t) = ψ′(~x, t). (6.29)The Hamiltonian is invariant, sine φ(~x) = onst.,
e−iφHeiφ = H. (6.30)The generator of the phase transformation is in this representation obviously

Gφ = 1. Hene we have the onserved quantity
0 =

d

dt
〈ψ|1|ψ〉 = d

dt

∫
d3xψ∗(~x, t)ψ(~x, t) =

d

dt
N . (6.31)The global U(1) gauge symmetry implies that the total partile number, i.e. theintegral of the probability density, is onserved.Loal U(1) gauge symmetry



6.1. CONTINUOUS SYMMETRIES 113We postulate that the Shrödinger equation shall be form invariant under U(1)gauge transformations (Yang-Mills).
ψ′(~x, t) = e+iθ(~x,t)ψ(~x, t) (6.32)
i~
∂

∂t
ψ

!
= − ~2

2m
~∇ 2ψ + V (x)ψ (6.33)

i~
∂′

∂t
ψ′ = − ~2

2m
~∇′ 2ψ′ + V (x)ψ′ (6.34)

~∇ψ′(~x, t) = ~∇e+iθ(~x,t)ψ(~x, t) (6.35)
= e+iθ(~x,t)[~∇ψ(~x, t)] + i[~∇θ(~x, t)] e+iθ(~x,t)ψ(~x, t)︸ ︷︷ ︸

=ψ′(~x,t)

(6.36)The ~∇θ term breaks the form invariane of the derivative. Therefore we have tode�ne a ovariant derivative, whih ompensates the ~∇θ term.
~∇ −→ ~∇ ′ = ~∇− i∂θ(~x, t)

∂~x
(ovariant derivative) (6.37)

~p = −i~~∇ −→ ~p ′ = ~p− ~
∂θ

∂~x
(kineti momentum), (6.38)and similarly

∂

∂t
−→ ∂

∂t

′
=

∂

∂t
− i∂θ(~x, t)

∂t
(ovariant derivative) (6.39)

E = i~
∂

∂t
−→ i~

∂

∂t

′
= i~

∂

∂t
+ ~

∂θ

∂t
. (6.40)In the presene of loal gauge invariane, the Shrödinger equation must be gen-eralized to

[
i~
∂

∂t
+ ~

∂θ

∂t

]
ψ(~x, t) =

[
1

2m

(
~p− ~

∂θ

∂~x

)2

+ V (~x)

]
ψ(~x, t), (6.41)i.e., gradient �elds must be added to the derivatives, whih does not hange thephysis. The generalization to general �elds yields

e

c
~A = ~

∂θ

∂~x
⇔ ∂θ

∂~x
=

e

~c
~A (6.42)

e~φ = −~
∂θ

∂t
⇔ −1

c

∂θ

∂t
=

e

~c
φ. (6.43)



114 CHAPTER 6. SYMMETRIES AND CONSERVATION LAWSThe eletromagneti 4-vetor potential reads
∂µθ −→

e

~c
aµ =

e

~c

(
φ
~A

) (6.44)
i~
∂

∂t
ψ(~x, t) =

[ 1

2m

(
~p− e

c
~A
)2

+ eφ(~x, t) + V (~x)
]
ψ(~x, t). (6.45)6.2 Disrete Symmetries6.2.1 Parity: Spae inversion symmetryThe ation of the parity operator P is de�ned by

P : ~x −→ −~x, (6.46)where ~x is a position vetor. Now we want to derive the eigenvalues of P .First of all, the de�nition of P yields
P 2 = 1. (6.47)If |ψ〉 is an eigenstate of P , we get
P |ψ〉 = λP |ψ〉 (6.48)
P 2|ψ〉 = λ2

P |ψ〉 (6.49)
⇔ |ψ〉 = λ2

P |ψ〉, (6.50)and therefore
λ2
P = 1. (6.51)Thus the eigenvalues of P are
λP =

{
+1 , even parity
−1 , odd parity . (6.52)If the Hamiltonian, i.e. the potential, is invariant under spae inversion (paritysymmetries), then the eigenfuntions of H in position representation must be



6.2. DISCRETE SYMMETRIES 115either symmetri (λP = +1) or antisymmetri (λP = −1) with respet to spaeinversion.We have enountered this property before in problems of a partile in a one-dimensional, symmetri potential well and the harmoni osillator.
|3〉

|2〉

|1〉

0〉 0 x
+1

−1

+1

−1

Parity 3210
n

Figure 6.2: Alternating parity, λp = (−1)n, of the harmoni osillator eigenfun-tionsProof:The ground state |0〉 has even parity λP = +1. An arbitrary state |n〉 an begenerated by letting at a† n-times on |0〉, i.e.
|n〉 =

1√
n!

(a†)n|0〉. (6.53)Expressing the reation operator through the position and momentum operators,we get in position representation for the state |n〉
ψn(x) =

1√
n!

(√
mω

2~
x− i

√
1

2m~ω

(
−i~ ∂

∂x

)

︸ ︷︷ ︸
a†

)n

ψ0(x). (6.54)The ation of P onto the reation operator gives
Pa† = −a†, (6.55)and the parity of |n〉 is therefore given by (−1)n.



116 CHAPTER 6. SYMMETRIES AND CONSERVATION LAWSIn the following we summarize the parity transformation of the operators ~̂x, ~̂pand ~̂E .̂
~x −→ −~̂x (6.56)
~̂p −→ −~̂p, sine ~̂p = −i~ ∂

∂~x
(6.57)

Ê −→ Ê, sine Ê = i~
∂

∂t
(6.58)6.2.2 Time reversal symmetryThe ation of the time reversal operator T is given by

t −→ −t (6.59)
~x −→ ~x (6.60)
~p −→ −~p, (6.61)where t is the time oordinate. The transformation of wave funtions under timereversal in a time reversal symmetri system is given by
THT−1 = H (6.62)
i~
∂

∂t
ψ = Hψ, (6.63)and

T

(
i~
∂

∂t
ψ

)
= THψ (6.64)

⇔ −i~ ∂
∂t
Tψ = HTψ, (6.65)whih is equivalent to

T : ψ −→ ψ∗
(
−i~ ∂

∂~x

)
−→

(
−i~ ∂

∂~x

)∗ . (6.66)The time reversal symmetry is broken in an external magneti �eld, whih is nottime reversed.



Chapter 7
Angular momentum and rotationalinvariane
Rotationally invariant problems are of great importane in physis. This lass ofproblems inludes all systems with a entral-symmetri potential, for instane theCoulomb potential, i.e. atomi systems et. Although being highly symmetriand, hene, having a large number of onserved quantities, these systems aresu�iently omplex to have interesting dynamis.In this hapter we onsider rotational invariane and the onservation laws thatfollow from it.7.1 Lie Algebra, Lie group, basis of representa-tion theoryIn ontrast to translations, rotations about di�erent axes in 3-dimensional spaeand, hene, their generators do not ommute with eah other.Moreover, later on we will need to perform rotations of di�erent objets, (salar)wave funtions, vetors in 3-dimensional position spae, and so-alled spinors.This means, we will need to represent the general rotation group as linear rota-tion operators ating in di�erent vetor spaes, e.g. the spae of square-integrablefuntions S, 3-dimensional vetor spae et. Therefore it is useful to onsider on-tinuous groups, like the rotation group, and the algebra of their generators on a117



118CHAPTER 7. ANGULARMOMENTUM AND ROTATIONAL INVARIANCEmore general level. Motivated by the entral importane of the ommutator oftwo operators, we de�ne:De�nition: Lie algebra A1. A is a real vetor spae2. Within A there exists a bilinear, sew-symmetri mapping [·, ·], alled �Lieprodut�, whih the properties
A× A → A (7.1)
(a, b) 7→ c a, b, c ∈ A (7.2)with

[a, b] = −[b, a]. (7.3)3. This Lie produt ful�lls the Jaobi identity:
[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, ∀a, b, c ∈ A (7.4)One may identify the vetor spae of linear operators on Hilbert spae with Aand the Lie produt with the ommutator [a, b] = ab − ba. This identi�ationobeys the onditions 1.-3.De�nition: Lie group GIs A the Lie algebra spanned by a set of hermitean operators

{Gn|G†
n = Gn, n = 1, . . . , N}, (7.5)the generators of G, then the group of unitary transformations

Un(α) = e−iαGn , α ∈ R (7.6)is alled the Lie group belonging to A. Using the above de�nitions, the ommu-tator [Gn, Gm] of two operators of the Lie algebra spei�es the struture of thegroup G in a general way by presribing how onseutive group transformations
Un(α) have to be applied. In order to perform suh a transformation ating ona onrete vetor spae V (e.g. funtion spae S, position spae) the elements



7.1. LIE ALGEBRA, LIE GROUP, BASICS OF REPRESENTATION THEORY119of the group, or of the generators of G, must be represented as operators in aonrete way. This leads to the de�nition of a representation.De�nition: Representation D of an algebra ALet V be a omplex vetor spae and let L(V ) be the vetor spae of linear trans-formations on V . The mapping D : A −→ L(V ) is alled representation of thealgebra A in the vetor spae V , if D is ompatible with [·, ·], i.e. if
[D(a), D(b)] = D([a, b]) ∀a, b ∈ A (7.7)yields with
[D(a), D(b)] := D(a)D(b)−D(b)D(a). (7.8)This requirement ensures that the algebra struture is preserved by the represen-tation. Abstrat algebra a, b, c [a, b] = c

↓ ↓ ↓Linear transformations D(a) D(b) D(c) D([a, b]) = D(c)De�nition: Irreduible representationThe representation D in a d-dimensional vetor spae V is irreduible, if there isno vetor subspae V ′ ⊂ V with dimension d′ < d, suh that V ′ is invariant under
D,

D(a)v = w ∈ V ′ ∀v ∈ V ′, a ∈ A . (7.9)This an be visualized in terms of matries:
• Vetors v ∈ V in oordinate representation:

v =




v1...
vd


 (7.10)

• Transformations D(a) on V are matries:
D(a) =




D1 0

D2

D3

0 D4


 (7.11)

D(a) = (D1) (7.12)



120CHAPTER 7. ANGULARMOMENTUM AND ROTATIONAL INVARIANCEEquation (7.11) desribes a reduible representation and equation (7.12) anirreduible representation.The above de�nitions will be �lled with meaning by the example of the angularmomentum algebra.7.2 Angular momentum algebra: generators of therotation group and angular momentum on-servationWe expet that the onserved quantity onneted with rotational invariane isthe angular momentum, like in lassial mehanis and in analogy to the onne-tion between translational invariane and linear momentum.In the following we will �rst de�ne and analyze the angular momentum operatorand then onstrut expliitly the generators of the rotation group for rotationsof salar wave funtions ψ(~r).Angular momentum in quantum mehanisWe hoose the x-representation and let ~̂L at on wave funtions ψ(~x, t). In las-sial mehanis the angular momentum is given by
L = [~x× ~p]. (7.13)The orrespondene priniple gives us the quantum mehanial operator whihreads
~̂L = ~̂x× ~̂p = ~x× (−i~~∇) . (7.14)In the following the ̂ is only used for operators if onfusion with lassial quan-tities may arise.
Lx = −i~

(
y ∂
∂z
− z ∂

∂y

)

Ly = −i~
(
z ∂
∂y
− y ∂

∂z

)

Lz = −i~
(
x ∂
∂y
− y ∂

∂x

)





Lk = −i~εklmxl ∂
∂xm

(7.15)



7.2. ANGULARMOMENTUM ALGEBRA: GENERATORS OF THE ROTATION GROUPAND ANGULARMOMENTUM CONSERVATION121Note here the sum onvention, i.e. doubly appearing indies are summed over.Compliations of the quantum mehanial desription1. The quantum mehanial de�nition of ~L is not unique, sine
[̂~r × ~̂p] 6= −[~̂p× ~̂r], (7.16)where the minus sign is the trivial sign of the lassial expression. As willbeome obvious below,
~̂L = [̂~r × ~̂p] (7.17)is the physially orret hoie of the de�nition for ~̂L being the generatorsof rotations.2. Rotations in d = 3 dimensions do not ommute in general, in ontrast tolinear translations. Rbα(ϕ) represents a rotation around the axis α̂ by theangle ϕ.Example:
Rbx

(π
2

)
Rbz

(π
2

)
êx = Rbx

(π
2

)
êy = êz, (7.18)but

Rbz

(π
2

)
Rbx

(π
2

)
êx = Rbz

(π
2

)
êx = êy. (7.19)

It will be shown below that the angular momentum operators Lx, Ly, Lz arethe generators of the rotation group in three dimensions. Correspondingly, theomponents Lx, Ly, Lz of ~L do not ommute. Using the de�nition Lk = εklmxlpmand [xl, pm] = i~δlm the non-ommutation an be shown expliitly.
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z

x

êz

êx

êy

Rx

(
π
2

)

Rz

(
π
2

)
y

Figure 7.1: Example of non-ommutation of rotationsProof of ommutation relation
[Lk, Ll] = εkmnεlm′n′[xmpn, xm′pn′ ] (7.20)

= εkmnεlm′n′{xm[pn, xm′ ]pn′ + xm′ [xm, pn′]pn} (7.21)
= εkmnεlm′n′{−xmi~δnm′pn′ + xm′i~δmn′pn} (7.22)
= i~εkmn{−εlnn′xmpn′ + εlm′mxm′pn} (7.23)
= i~εkmnεln′nxmpn′ − i~εknmεlm′mxm′pn (7.24)
= i~ (δklδmn′ − δkn′δml)xmpn′

−i~ (δklδnm′ − δkm′δnl) xm′pn (7.25)
= i~

{
δkl
∑

m

xmpm − xlpk − δkl
∑

n

xnpn + xkpl

} (7.26)
= i~(xkpl − xlpk) (7.27)
= i~εklmLm (7.28)In the following we summarize these really important relations.

[Lk, Lm] = i~εklmLm

[Lx, Ly] = i~Lz

[Ly, Lz] = i~Lx

[Lz, Lx] = i~Ly

(7.29)
The non-trivial ommutation rules of Lx, Ly, Lz imply
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• that not all 3 omponents of ~L an simultaneously be measured with arbi-trary preision (unertainty priniple) and
• that the eigenstates of a rotationally invariant system are uniquely hara-terized by less than 3 omponents of ~L!The profound onsequenes of this unertainty will be analyzed in setion 7.4.Representation in spherial oordinates(=hoie of basis of ~x-spae)

x = ρ cos(ϕ)

ρ = r sin(θ)

y = ρ sin(ϕ)

r

y

x

z

z = r cos(θ)

êϕ

ϕ

θ

êθ

êr

Figure 7.2: Spherial oordinatesThe vetors êr, êϕ and êθ form a loal orthonormal oordinate system whih isdependent of the onsidered point. The omponents of the artesian vetor ~xread in spherial oordinates,
x = r cos(ϕ) sin(θ) (7.30)
y = r sin(ϕ) sin(θ) (7.31)
z = r cos(θ). (7.32)Now we want to express the omponents of the angular momentum operator ~Lin spherial oordinates. In order to do this we �rst have to express the gradientin spherial oordinates, beause ~L ontains the momentum operator ~p = −i~~∇.



124CHAPTER 7. ANGULARMOMENTUM AND ROTATIONAL INVARIANCEIn artesian oordinates the gradient reads
~∇ = êx

∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
=




∂
∂x
∂
∂y
∂
∂z


 . (7.33)To express this in spherial oordinates we have to derive the diretional deriva-tives along the axes of the loal orthonormal oordinate system êr, êϕ, êθ.

~∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êϕ

1

r sin(θ)

∂

∂ϕ
=




∂
∂r

1
r
∂
∂θ

1
r sin(θ)

∂
∂ϕ


 (7.34)The basis transformation from the artesian to the spherial system is done by

∂

∂r
=

∑

xi=x,y,z

∂xi
∂r

∂

∂xi
(7.35)

1

r

∂

∂θ
=

1

r

∑

xi=x,y,z

∂xi
∂θ

∂

∂xi
(7.36)

1

r sin(θ)

∂

∂ϕ
=

1

r sin(θ)

∑

xi=x,y,z

∂xi
∂ϕ

∂

∂xi
. (7.37)One therefore obtains




∂
∂r

1
r
∂
∂θ

1
r sin(θ)

∂
∂ϕ


 =




cos(ϕ) sin(θ) sin(ϕ) sin(θ) cos(θ)

cos(ϕ) cos(θ) sin(ϕ) cos(θ) − sin(θ)

− sin(ϕ) cos(ϕ) 0




︸ ︷︷ ︸
U(r,θ,ϕ)

×




∂
∂x
∂
∂y
∂
∂z


 (7.38)




∂
∂x
∂
∂y
∂
∂z


 = UT




∂
∂r

1
r
∂
∂θ

1
r sin(θ)

∂
∂ϕ


 , (7.39)where U(r, θ, ϕ) is an orthonormal transformation. The artesian omponentsof ~L expressed in spherial oordinates using the orthonormal transformation
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U−1(r, θ, ϕ) read




Lx

Ly

Lz


 = −i~




0 −z y

z 0 −x
−y x 0







∂
∂x
∂
∂y
∂
∂z


 (7.40)

= −i~




0 −z y

z 0 −x
−y x 0


UT




∂
∂r

1
r
∂
∂θ

1
r sin(θ)

∂
∂ϕ


 . (7.41)Multiplying this produts out an plugging in the spherial oordinates for x, y, zone �nally gets




Lx

Ly

Lz


 =




i~
(
sin(ϕ) ∂

∂θ
+ cos(ϕ) cot θ ∂

∂ϕ

)

i~
(
− cos(ϕ) ∂

∂θ
+ sin(ϕ) cot θ ∂

∂ϕ

)

−i~ ∂
∂ϕ


 . (7.42)Generator of rotations about an arbitrary axis â: Rba(∆ϕ)Representation in funtion spae S:

DS(Rba(∆ϕ))ψ(~x) = ψ(Dx(R
−1
ba (∆ϕ))~x) (7.43)Often, the shorthand notation D(R)→ R is used, identifying the representationwith the transformation itself,

Rba(∆ϕ)ψ(~x) = ψ(R−1
ba (∆ϕ)~x). (7.44)Without loss of generality we hoose êz||~a and then obtain

Rba≡z(∆ϕ)ψ(r, θ, ϕ) = ψ(r, θ, ϕ−∆ϕ) (7.45)
=

∞∑

n=0

1

n!

∂nψ

∂ϕn

∣∣∣∣
(r,θ,ϕ)

(−∆ϕ)n (7.46)
= e−∆ϕ ∂

∂ϕψ(r, θ, ϕ) (7.47)
= e−i∆ϕ

Lz
~
ψ(r,θ,ϕ). (7.48)Therefore 1

~

~L = [~x×~p]
~

are the generators of the rotation group and the ommutator
[Li, Lj] = i~εijkLk is the angular momentum algebra. In a rotationally invariantsystem, [Li, H ] = 0, the angular momentum Li is onserved, i.e.

d

dt
〈ψ|Li|ψ〉 = 0, ∀|ψ〉 with i~

∂

∂t
|ψ〉 = H|ψ〉. (7.49)Furthermore U~a = e−i~a

~L/~ desribes a rotation about axis ~a by the angle |~a|.



126CHAPTER 7. ANGULARMOMENTUM AND ROTATIONAL INVARIANCE7.3 Eigenstates of Lz: 2-dimensional rotationsThe z-omponent of ~L is given by
Lz = −i~ ∂

∂ϕ
. (7.50)The eigenstates of Lz, in ~x-representation, are analogous to the p eigenstates andread

ψm(ϕ) =
1√
2π
eimϕ (7.51)with the eigenvalue m~ and r, θ arbitrary. The prefator in (7.51) arises due tonormalization. But the wave funtion must have a unique value by rotations byan angle of 2π, i.e.

ψm(ϕ− 2π) = ψm(ϕ). (7.52)This ondition together with (7.51) immediately gives us
m ∈ Z integer , (7.53)where m is from now on alled the magneti angular momentum quantum num-ber. From this we see that again, boundary ondition indues quantization.7.4 The eigenvalue problem of ~L in 3 dimensionsConsider a rotationally invariant system,
[Li, H ] = 0, i = x, y, z. (7.54)Although all 3 omponents of ~L ommute with H , they do not ommute witheah other. This means that there are no simultaneous eigenstates of Lx, Ly, Lz.The eigenstates of angular momentum must be uniquely haraterized by lessthan 3 (onserved) quantum numbers.In order to haraterize the eigenstates of a rotationally invariant system om-pletely, we must �nd a maximal set of operators whih
• are built out of Lx, Ly, Lz and, thus, ommute with H ,
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• all ommute among eah other.Obviously, the number of suh operators is less than 3.We an hoose1 the modulus squared of ~L (or length),
~L 2 = L2

x + L2
y + L2

z, (7.55)and the z-omponent Lz sine
[~L 2, Li] = 0 , i = x, y, z. (7.56)Remarks:
• One the �length� of ~L is �xed, i.e. ~L 2, only one omponent of ~L an bedetermined sharply in any given state.
• An operator whih ommutes with all operators of an algebra A and, hene,with the whole group G, is alled Casimir operator.Example: ~L 2 for angular momentum algebra7.4.1 Eigenstates and eigenvalues of ~L 2 and LzThe eigenstates and eigenvalues of ~L 2and Lz ould be determined in positionrepresentation by solving the di�erential equations orresponding to the eigen-value equations with the boundary ondition of uniqueness of the wave funtion,analogous to the ase d = 2 in setion 7.3.Instead we follow here the algebrai solution method, analogous to the harmoniosillator problem, sine it will provide further insight into the struture of theangular momentum algebra.Let |αβ〉 be simultaneous eigenstates of ~L 2 and Lz, i.e.
~L 2|αβ〉 = α|αβ〉 (7.57)
Lz|αβ〉 = β|αβ〉, (7.58)1This hoie is not unique and in general there is no onstrutive way to �nd the orretoperators.



128CHAPTER 7. ANGULARMOMENTUM AND ROTATIONAL INVARIANCEwhere β = ~m. Sine the eigenvalue spetrum of Lz is equidistant (see setion7.3), it should be possible to de�ne raising and lowering operators L+, L−, whihare independent of quantum number m.Harmoni osillator Angular momentum
[a†a, a†] = a† [Lz, L±] = ±~L±

[a†a, a] = −a
a†, a result in raising/lowering n L± raises/lowers the quantumnumber β by one unit of ~(see (7.59) and (7.60))

LzL+|αβ〉 = (L+Lz + ~L+)|αβ〉 = (β + ~)L+|αβ〉 (7.59)
LzL−|αβ〉 = (L−Lz − ~L−)|αβ〉 = (β − ~)L−|αβ〉 (7.60)The ommutation rule
[Lz, L±] = ±~L± (7.61)is ful�lled by the de�nition
L± = Lx ± iLy . (7.62)

L± is alled the raising/lowering operator. Sine [~L 2, Li] = 0, i = x, y, z yields,the following ommutation rule is valid,
[~L 2, L±] = 0 . (7.63)It follows that the raising/lowering operators leave the eigenvalue α of ~L 2 un-hanged, i.e.
~L 2L±|αβ〉 = αL±|αβ〉 . (7.64)Eigenvalue of Lz (α, β ∈ R):
L±|αβ〉 = C±(α, β)|α, β ± ~〉, (7.65)whih represents a ladder of equidistant eigenvalues.
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• Classial:Component |Lz| should not be larger than the length |~L|.
• Quantum mehanial:

〈αβ|L2 − L2
z|αβ〉 = 〈αβ|(α− β2)|αβ〉 (7.66)

〈αβ|(L2
x + L2

y)|αβ〉 ≥ 0, (7.67)sine L2
x, L

2
y are positive de�nite. Equation (7.67) is equivalent to

β2 ≤ α −
√
α ≤ β ≤

√
α, (7.68)like in the lassial ase.Therefore there exists a maximum (minimum) eigenvalue βmax, βmin whih annotbe raised (lowered), i.e.

L+|αβmax〉 = 0 and L−|αβmin〉 = 0. (7.69)Relations between α and βmax, βmin
L−L+ = (Lx − iLy)(Lx + iLy) (7.70)

= L2 − L2
z − ~Lz (7.71)

0 = L−L+|αβmax〉 = (L2 − L2
z − ~Lz)|αβmax〉 (7.72)

= α− β2max − ~βmax (7.73)
L+L− = L2 − L2

z + ~Lz (7.74)
0 = L+L−|αβmin〉 = α− β2min + ~βmin (7.75)From equation (7.73) we get the relation
α = βmax(βmax + ~) (7.76)and from equation (7.75)
α = βmin(βmin − ~) and βmin = −βmax . (7.77)Sine |αβmin〉 is obtained from |αβmax〉 by applying L− k-times, k ∈ N0 integer,we have
βmax − βmin = 2βmax = ~k (7.78)
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βmax =

~k

2
= −βmin, k ∈ N0

α = ~2k

2

(
k

2
+ 1

) . (7.79)
Remark:The solution of the eigenvalue problem of Lz in the representation of salar wavefuntions in position spae (see setion 7.3) has shown that β = ~m an take ononly integer values of ~.Our general, representation-free disussion above shows that both integer andhalf-integer values are allowed. The half-integer values orrespond to di�erentrepresentation of the rotation group, ating in the vetor spae of �spinors�, i.e.vetor spaes with even dimensionality d = 2, 4. The integer values our inrepresentations of the rotation group ating in vetor spaes with odd dimension-ality, salar wave funtion d = 1, vetor wave funtion, d = 3 et. In nature, thespinor representations are also realized and orrespond to partiles with spin, an�internal� quantum degree of freedom without lassial analogon (see hapter 9).The more general generators of the rotation group with integer or half-integereigenvalues are usually denoted by J 's.

~L −→ ~J, L± −→ J± (7.80)Summary of results: Rename k
2
→ j

~J 2|j m〉 = j(j + 1)~2|j m〉
Jz|j m〉 = m~|j m〉,

(7.81)with
j =

{
0, 1, 2, . . .
1
2
, 3

2
, 5

2
, . . .

(7.82)
m = j, j − 1, . . . ,−j + 1,−j for given j. (7.83)



7.4. THE EIGENVALUE PROBLEM OF ~L IN 3 DIMENSIONS 131Therefore m an take (2j+1) values. For the angular momentum representationof salar wave funtions in position spae, we identify
j = l = 0, 1, 2, . . . (integer) (7.84)
m = l, l − 1, . . . ,−l . (7.85)These eigenstates |l m〉 de�ned in this way are the only ones possible.Proof:The steps of argumentation are analogous to the ones used in the harmoni osilla-tor problem. The states |l mmax〉 and |l mmin〉 are unique, beause the di�erentialequations in position spae orresponding to
L+|l mmax〉 = 0 (7.86)
L−|l mmin〉 = 0 (7.87)have unique solutions, where
L± = Lx ± iLy −→ ±~eiϕ

(
∂

∂θ
± i cot(θ)

∂

∂ϕ

)
, (7.88)where we have used the de�nition of Lx, Ly in the x-basis.7.4.2 Full determination of the eigenstates |j, m〉One, for given j, the states with maximal or minimal m, |j, j〉 or |j, −j〉, aredetermined, all other states with the same j-value are obtained by the ation of

J+ or J−.
J±|j, m〉 = C±(j,m)|j, m± 1〉, (7.89)but the fators C±(j,m) are still unknown. Now we build the adjoint equationof (7.89),
〈j, m|J∓ = C∗

±(j,m)〈j, m± 1|, (7.90)and by this obtain
〈j, m|J−J+|j, m〉 = |C+(j,m)|2〈j m+ 1|j m+ 1〉 (7.91)

⇔ 〈j, m|
(
J2 − J2

z − ~Jz
)
|j, m〉 = |C+(j,m)|2. (7.92)
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|C+(j,m)|2 = ~2[j(j + 1)−m2 −m] (7.93)

= ~2(j −m)(j +m+ 1). (7.94)By onvention, we hoose the overall phase fator of C+(j,m), eiα = 1 and get
C+(j,m) = ~

√
(j −m)(j +m+ 1). (7.95)Similarly, using 〈j m|J+J−|j m〉 = |C(j,m)|2, it an be shown that

C−(j,m) = ~
√

(j +m)(j −m+ 1) (7.96)is valid, i.e.
J±|j m〉 = ~

√
(j ∓m)(j ±m+ 1)|j m± 1〉 . (7.97)7.4.3 Matrix elements of the angular momentum ompo-nents: Multiplets

〈j′m|Jx|j m〉 =

〈
j′m′

∣∣∣∣
J+ + J−

2

∣∣∣∣ j m
〉 (7.98)

=
~

2
δjj′
[
δm′m+1

√
(j −m)(j +m+ 1)

+δm′m−1

√
(j +m)(j −m+ 1)

] (7.99)
〈j′m′|Jy|j m〉 =

〈
j′m′

∣∣∣∣
J+ − J−

2i

∣∣∣∣ j m
〉 (7.100)

=
~

2i
δjj′
[
δm′m+1

√
(j −m)(j +m+ 1)

−δm′m−1

√
(j +m)(j −m+ 1)

] (7.101)
〈j′m′|Jz|j m〉 = δjj′δmm′~m (7.102)
〈j′m′| ~J 2|j m〉 = δjj′δmm′~2j(j + 1) (7.103)Matrix representation
• of ~J2/~2:
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j 0 1/2 1
m 0 1/2 −1/2 1 0 -1

j m0 0 0 0 . . .

1/2 1/2 3/4 0
1/2 −1/2 0 3/41 1 2 0 01 0 0 2 01 -1 0 0 0 2...

• of Jx/~:
j 0 1/2 1/2 1 1 1
m 0 1/2 −1/2 1 0 -1

j m0 0 0 0 . . .

1/2 1/2 0 1/2

1/2 −1/2 1/2 01 1 0 1/
√

2 01 0 1/
√

2 0 1/
√

21 -1 0 0 1/
√

2 0...
The matrix elements do not vanish only for m−m′ = ±1.
• of Jy/~:
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j 0 1/2 1/2 1 1 1
m 0 1/2 −1/2 1 0 -1

j m0 0 0 0 . . .

1/2 1/2 0 i/2

1/2 −1/2 i/2 01 1 0 −i/
√

2 01 0 i/
√

2 0 −i/
√

21 -1 0 0 i/
√

2 0...Notie:
Jx, Jy, Jz ating on any state |j, m〉 leave j = onstant. In the basis {|j, m〉},the Jx, Jy, Jz matries have blok struture with bloks of j =onstant.
• The �nite rotation R(ϕ) = e−i~ϕ·

~J about the axis ϕ̂ by angle |~ϕ| leaves
j =onst. and the subspae V (j) spanned by {|j, j〉, . . . , |j, −j〉} is thereforeinvariant under any rotation.
• Any basis state |j, m〉 an be transformed into any other basis state |j, m′〉with the same j by an appropriate rotation, beause Jx, Jy are omposedof J+, J−. Thus there is no invariant subspae of V (j).
• The representation of the angular momentum algebra, or the rotation group,as linear transformations, or rotations, in the (2j+ 1)-dimensional spae ofangular momentum states V (j) is irreduible.

D : Ji −→ D(Ji) = J
(j)
i (irreduible representation) (7.104)The upper index (j) indiates that Ji is ating on the j-subspae. The basisset {|j, j〉 . . . |j, −j〉} is alled the j-multiplet of the representation.The representation of the angular momentum algebra, or rotation group,in a spae with several di�erent j (above matries) is reduible, sine it anbe deomposed into invariant subspaes.



7.4. THE EIGENVALUE PROBLEM OF ~L IN 3 DIMENSIONS 1357.4.4 Angular momentum eigenfuntions in the positionbasis
ψml (r, θ, ϕ) = R(r)Y m

l (θ, ϕ) (7.105)The eigenfuntions of ~L 2, Lz an be determined expliitly in the position basisby 1. determining ψmmax=l
l (r, θ, ϕ) = 〈~x|l, l〉2. repeatedly ating with L− on ψll(r, θ, ϕ) in the x-basis.Sine ~L 2 is in x-basis the angular part of ~∇ 2, Y m

l (θ, ϕ) are spherial harmonis.1. Eigenfuntions for the ase m = lWe have
L+|l, l〉 = 0 and L± = ±~e±iϕ

(
∂

∂θ
± i cot θ

∂

∂ϕ

) (7.106)and therefore get
(
∂

∂θ
+ i cot θ

∂

∂ϕ

)
ψll(r, θ, ϕ) = 0. (7.107)We proeed a fatorization of the following form

ψll(r, θ, ϕ) = R(r)Y l
l (θ, ϕ), (7.108)where the radial part R(r) is not determined by the ~L operators. It willbe �xed by the radial part of a rotational invariant Hamiltonian. Sineequation (7.107) is a sum of terms ontaining the ∂

∂θ
or ∂

∂ϕ
di�erentialoperators separately, the solution separates in θ− and ϕ−dependent parts,

Y l
l (θ, ϕ) = U l

l (θ)e
ilϕ. (7.109)The exponential fator has the given form sine Y l

l (θ, ϕ) is eigenfuntion of
Lz with eigenvalue l~. Plugging this ansatz into equation (7.107) one getsa di�erential equation for U l

l (θ),
(
∂

∂θ
− l cot(θ)

)
U l
l (θ) = 0. (7.110)
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dU

U
= l

d sin(θ)

sin(θ)
(7.111)

U l
l (θ) = (sin(θ))l, (7.112)up to normalization whih an be absorbed in R. The normalized eigen-funtions are

Y l
l (θ, ϕ) = (−1)l

√
(2l + 1)!

4π

1

2ll!
(sin(θ))l eilϕ (7.113)

∫
dΩ
∣∣Y l
l (θ, ϕ)

∣∣2 =

∫ +1

−1

d cos(θ)

∫ 2π

0

dϕ
∣∣Y l
l (θ, ϕ)

∣∣2 (7.114)
= 1 (7.115)2. Eigenfuntions for arbitrary l,m ≥ 0

Y m
l (θ, ϕ) =

1

~l−m
1√

(2l) . . . (l +m+ 1)
√

1 . . . (l −m)
Ll−m− Y l

l (θ, ϕ) (7.116)
Y m
l (θ, ϕ) = (−1)l

√
(2l + 1)!

4π

1

2ll!

√
(l +m)!

(2l)!(l −m)!
eimϕ

×(sin(θ))−m
dl−m

d cos(θ)l−m
(sin(θ))2l, m ≥ 0

Y −m
l (θ, ϕ) = (−1)m Y m

l (θ, ϕ)∗,

(7.117)
sine m ours in eimϕ only. The funtions Y m

l (θ, ϕ) are alled spherialharmonis whih are normalized and omplete by the algebrai onstru-tion.
∫
dΩY m′∗

l (θ, ϕ)Y m
l (θ, ϕ) = δll′δmm′ (7.118)

∞∑

l=0

+l∑

m=−l
Y m∗
l (θ′, ϕ′)Y m

l (θ, ϕ) = δ2(Ω− Ω′), (7.119)where Ω = (θ, ϕ).



7.4. THE EIGENVALUE PROBLEM OF ~L IN 3 DIMENSIONS 137Any wave funtion ψ(r, θ, ϕ) an be expanded in the Y m
l with r-dependent oef-�ients,

ψ(r, θ, ϕ) =

∞∑

l=0

+l∑

m=−l
Rm
l (r)Y m

l (θ, ϕ). (7.120)This will be used in the solution of Hamiltonian eigenvalue problems with spher-ial symmetry. From orthonormality we get
Rm
l (r) =

∫
dΩY m∗

l (θ, ϕ)ψ(r, θ, ϕ). (7.121)Some spherial harmonis
l = 0 : Y 0

0 =

√
1

4π
(7.122)

l = 1 : Y ±1
1 = ∓

√
3

8π
sin(θ)e±iϕ (7.123)

Y 0
1 =

√
3

4π
cos(θ) (7.124)

l = 2 : Y ±2
2 =

√
15

32π
sin2 θe±2iϕ (7.125)

Y ±1
2 =

√
15

8π
sin(θ) cos(θ)e±iϕ (7.126)

Y 0
2 =

√
5

16π
(3 cos(θ)− 1) (7.127)The spherial harmonis are related to the assoiated Legendre polynomials Pm

l (cos(θ))via
Y m
l (θ, ϕ) =

√
(2l+1)(l−m)!

4π(l+m)!
(−1)meimϕPm

l (cos(θ)) , (7.128)where the P 0
l = Pl(cos(θ)) are the Legendre polynomials. Reursion relations for

Y m
l , Pm

l an be proved using their algebrai struture as eigenfuntions of ~L 2, Lz.The following 3-dimensional plots2 show the angle-dependent value of Y m
l (θ, ϕ).2Plots available at http://www.vis.uni-stuttgart.de/∼kraus/LiveGraphis3D/java_sript/SpherialHarmonis.html
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Figure 7.3: Spherial harmonis for l = 0, m = 0 and l = 1, m = 0

Figure 7.4: Spherial harmonis for l = 1, m = ±1 and l = 2, m = 0
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Figure 7.5: Spherial harmonis for l = 2, m = ±1 and l = 2, m = ±2



140CHAPTER 7. ANGULARMOMENTUM AND ROTATIONAL INVARIANCE



Chapter 8
The Hydrogen Atom
8.1 Solution of rotationally invariant problems: gen-eral properties
• Separation of enter-of-mass motionSystem of 2 partiles m1, m2, moving in a potential V (r) depending onlyon the distane r = |~r2 − ~r1| of the partiles.

0 ~r2
m2

m1
~r1

~r2 − ~r1

V (|~r2 − ~r1|)Figure 8.1: Two body problem in a radial-dependent potentialRelative and enter-of-mass oordinates:
~r = ~r2 − ~r1, r = |~r2 − ~r1| (8.1)
~R =

m1~r1 +m2~r2
m1 +m2

(8.2)141



142 CHAPTER 8. THE HYDROGEN ATOMSeparation of free COM motion:
− ~2

2(m1 +m2)

∂2

∂R2
ψCOM(~R) = ECOMψCOM(~R) (8.3)Relative motion:Partile of e�etive mass µ in a entral symmetri potential V (r)

• Separation of angular motion: radial Shrödinger equationKineti energy in spherial oordinates:
~p 2 = ~pr

2 + ~p⊥
2 = ~pr

2 +

[
~r

r
× ~p
]2

, (8.4)where the seond term is the omponent of ~p whih is perpendiular to ~rand therefore unimportant for the squared absolut value.
~r

~pr

~p

~p⊥

Figure 8.2: Division of ~p into radial and perpendiular part
~p 2 = ~pr

2 +
1

r2
~L 2 (8.5)with

~L 2 = L2
x + L2

y + L2
z (8.6)

= −~2

[
1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

] (8.7)
~pr

2 = ~2 1

r2

∂

∂r
r2 ∂

∂r
. (8.8)The Shrödinger equation in spherial oordinates therefore reads

[
− ~2

2µ

1

r2

∂

∂r
r2 ∂

∂r
+

~L 2

2µr2
+ V (r)

]
ψElm(r, θ, ϕ)

= EψElm(r, θ, ϕ)

, (8.9)



8.1. SOLUTION OF ROTATIONALLY INVARIANT PROBLEMS: GENERAL PROPERTIES143where the term ~L 2

2µr2
is the entrifugal potential. Sine the Hamilton oper-ator H is a sum of purely radial and angular derivative terms, the solutionseparates into radial and angular parts, with the angular part being aneigenfuntion of ~L 2.

ψElm(r, θ, ϕ) = RElY
m
l (θ, ϕ) (8.10)Degeneray of the solutionsSine H does not depend on Lz, the ψElm must be degenerate with respetto m. By [H,L±] = 0 we obtain

HψElm = EψElm (8.11)
⇔ HL±ψElm = EL±ψElm (8.12)
⇔ HψElm±1 = EψElm±1. (8.13)The square of the angular momentum operator reads in spherial oordi-nates
~L 2 = L2

x + L2
y + L2

z (8.14)
= −~2

[(
sin(ϕ)

∂

∂θ
+ cos(ϕ) cot θ

∂

∂ϕ

)2

+

(
− cos(ϕ)

∂

∂θ
+ sin(ϕ) cot θ

∂

∂ϕ

)2

+
∂2

∂ϕ2

] (8.15)
= −~2

[
sin2 ϕ

∂2

∂θ2
+ cot2 θ

(
cos(ϕ)

∂

∂ϕ
cos(ϕ)

∂

∂ϕ

)

+ sin(ϕ)
∂

∂θ
cos(ϕ) cot θ

∂

∂ϕ
+ cos(ϕ) cot θ

∂

∂ϕ
sin(ϕ)

∂

∂θ

+ cos2 ϕ
∂2

∂θ2
+ cot2 θ

(
sin(ϕ)

∂

∂ϕ
sin(ϕ)

∂

∂ϕ

)

− cos(ϕ)
∂

∂θ
sin(ϕ) cot θ

∂

∂ϕ
− sin(ϕ) cot θ

∂

∂ϕ
cos(ϕ)

∂

∂θ

+
∂2

∂ϕ2

] (8.16)
= −~2

[
∂2

∂θ2
+ cot2 θ

∂2

∂ϕ2
+ cot θ

∂

∂θ
+

∂2

∂ϕ2

] (8.17)
= −~2

[
1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
. (8.18)



144 CHAPTER 8. THE HYDROGEN ATOMRadial part of the Shrödinger equation
[
− ~2

2µ

1

r2

∂

∂r2
r2 ∂

∂r
+

~2l(l + 1)

2µr2
+ V (r)

]
REl(r) (8.19)

=
[
− ~2

2µ

(
∂2

∂r2
+

2

r

d

dr

)
+

~2l(l + 1)

2µr2
+ V (r)

]
REl(r) (8.20)

= EREl(r), (8.21)sine
1

r2

∂

∂r
r2 ∂

∂r

(
1

r
U(r)

) (8.22)
= − 1

r2

∂

∂r
U(r) +

1

r2

∂

∂r
r
d

dr
U(r) (8.23)

= − 1

r2

∂

∂r
U +

1

r2

∂

∂r
U +

1

r

d2

dr2
U. (8.24)We de�ne REl(r) =: 1

r
UEl(r) and then obtain

[
d2

dr2
− l(l + 1)

r2
− 2µ

~2
V (r)

]
UEl(r) = −2µE

~2
UEl(r) . (8.25)This equation is similar to 1the one-dimensional Shrödinger equation, but� repulsive entrifugal potential ∼ l(l+1)

r2
,� 0 ≤ r ≤ ∞.We therefore have to take boundary onditions for r → ∞ and r = 0 intoaount.

• Limiting behavior of UEl(r) for r →∞The entral potential shall be loalized, i.e. V (r) → 0 for the ase r →
∞. We then get two types of solutions, a bound state for UEl → 0 anda sattering states whih is unbound and asymptotially free for UEl ∼
e±ikr. The sattering states will be onsidered in a later hapter (Satteringtheory). Hene, we will onsider only bound states.
• Boundary ondition for r → 0We assume that V (r) is less singular than 1

r2
for r → 0, beause otherwise



8.2. THE HYDROGEN ATOM 145the problem would be dominated by V (r) for r → 0, and the r → 0 solutionwould depend on the details of V (r). The radial Shrödinger equation inthe limit r → 0 reads
[
d2

dr2
− l(l + 1)

r2

]
UEl(r) = 0. (8.26)We make the ansatz

U ∼ rα, (8.27)with
α(α− 1) = l(l + 1) (8.28)

α =

{
l + 1

−l
(8.29)

Ul(r) ∼
{
rl+1 (regular)
r−l (irregular) . (8.30)Note:These two types of asymptoti solutions are the only ones possible, sine adi�erential equation of seond order has two linearly independent solutions.The irregular solution r−l is exluded on physial grounds, or preiselybeause of normalizability.

∫ R0

0

dr r2r−2(l+1) =

∫ R0

0

dr r2|R(r)|2 <∞ (8.31)only for l = 0, 1, . . . beause the probability density |R(r)|2 ∼ |r−(l+1)|2would otherwise diverge.8.2 The hydrogen atom8.2.1 The energy eigenvaluesThe e�etive mass µ is de�ned by
µ =

mpme

mp +me
≈ mp ≡ m, (8.32)



146 CHAPTER 8. THE HYDROGEN ATOMwhere mp is the proton mass and me the eletron mass whih are in the ratio
mp/me ≈ 2000. The radial Shrödinger equation was given by

[
d2

dr2
− l(l + 1)

r2
− 2µ

~2
(V (r)− E)

]
UEl(r) = 0, (8.33)where V (r) is in this ase the Coulomb potential,

V (r) = −e
2

r
. (8.34)In this hapter we will only onsider solutions with E < 0. The region with

E < V (r), i.e. r > e2

−E , is lassially forbidden, so that we expet exponentiallydeaying solutions for r → ∞. In the following we want to derive the boundstates of the system.For
e2

r
≪ |E|, ~2l(l + 1)

2µr2
≪ |E| (8.35)we have

(
d2

dr2
+

2µ

~2
E

)
UEl = 0 (8.36)

UEl(r) ∼ e−κr (r →∞) (8.37)
UEl(r) ∼ rl+1 (r → 0), (8.38)where

κ =

√−2µE

~
. (8.39)Now we introdue the natural dimensionless variable ̺, de�ned by

̺ = κr =

√
2µ|E|
~

r . (8.40)The quantized binding energy |E| will be determined by the boundary onditions,like in any bound state problem.



8.2. THE HYDROGEN ATOM 147We make a power series ansatz for UEl(r),
UEl(r) = vEl(̺)e

−̺ (8.41)
vEl(̺) = ̺l+1

∞∑

k=0

Ck̺
k. (8.42)Plugging this ansatz into equation (8.33) yields

d2v

d̺2
− 2

dv

d̺
+

[
e2λ

̺
− l(l + 1)

̺2

]
v = 0, (8.43)with

λ :=

√
2µ

~2|E| . (8.44)Using the power series ansatz (8.42), analogous to the harmoni osillator, gives
0 =

∞∑

k=0

{
Ck [(k + l + 1)(k + l)− l(l + 1)] ̺k+l−1

Ck
[
−2(k + l + 1) + e2λ

]
̺k+l

} (8.45)
=

∞∑

k=0

{
Ck+1 [(k + l + 2)(k + l + 1)− l(l + 1)]

+CK
[
−2(k + l + 1) + e2λ

] }
̺k+l (8.46)By this we get the reursion relation

ck+1 = ck
−e2λ+ 2(k + l + 1)

(k + l + 2)(k + l + 1)− l(l + 1)
. (8.47)Note:For the one-dimensional harmoni osillator there is a 2-step reursion relation,leading to a purely even or odd power series, re�eting parity eigenfuntion. Forthe three-dimensional problem of the H-atom, the parity operation ϕ → ϕ + π,

θ → π − θ, is not re�eted in r. Therefore, the power series in r has no de�niteparity here.



148 CHAPTER 8. THE HYDROGEN ATOMIn the limit k →∞ we get
ck+1 =

2

k
ck −→

∞∑

k≫0

1

k!
(2̺)k = A + e2̺. (8.48)An in�nite series would lead to diverging solution, so that the series must termi-nate at some �nite k for whih ck+1 = 0 is valid.

e2λ = 2(k + l + 1) (8.49)or
E = − µe4

2~2(k + l + 1)2
, (8.50)with

k = 0, 1, 2, . . . (8.51)
l = 0, 1, 2, . . . . (8.52)From this we an see that the energy eigenvalue is quantized. Sine E dependsonly on n = k + l + 1, we an hoose n as the relevant quantum number, i.e.
En = −µe

4

2~2

1

n2
, (8.53)where the fator µe4/2~2 is known as the Rydberg-unit whih has the numerialvalue

1Ry ∼= 13, 6eV. (8.54)8.2.2 Degeneray of the energy states n1. The energy eigenvalue En does not depend on the magneti quantum num-ber m for the following reasons.
[H,Lx,y,z] = 0 (rotational invariane) (8.55)

[H,L±] = 0 (8.56)
Hψn = Enψn (8.57)

⇒ HL±ψn = EnL±ψn . (8.58)



8.2. THE HYDROGEN ATOM 149Therefore we have degenerate multiplets of states, i.e. that the energyeigenvalue En has for given n, l the same value for
m = l, l − 1, . . . ,−l, (8.59)so that eah state (n, l) is (2l + 1)-fold degenerate.2. The energy eigenvalueEn does not depend on l, although the radial Shrödingerequation does.There is another raising/lowering operator M± whih inreases/lowers l →

l ± 1, with [H,M±] = 0, i.e. M± are the generators of another, hidden,symmetry group. It is related to the onserved Runge-Lenz vetor in las-sial mehanis. This degeneray is a speiality of the Coulomb 1
r
-potential(�aidental symmetry�).For other potentials the reursion relation would be more ompliated, in-volving more than 2 ck's, and E would depend on n, l.3. For given n the angular momentum quantum number l takes the values

l = 0, 1, . . . , n− 1, (8.60)and for �xed k = n− l− 1 the magneti quantum number takes the values
m = +l, . . . ,−l. (8.61)Total degeneray of an energylevel En
n−1∑

l=0

(2l + 1) = 2 · 1
2
(n− 1)n+ n = n2 (8.62)Hydrogen energy spetrum and spetrosopi terms8.2.3 The hydrogen eigenfuntions: summaryThe eigenfuntions were given by

ψnlm(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ), (8.63)
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n = 1

n = 2

n = 3 n = 4
h54g3f2d1p0sl =

E/Ry0
-1Figure 8.3: Energy spetrum of the hydrogen atomand the energy eigenvalues by

En = −µe
4

2~2

1

n2
, (8.64)where the prinipal quantum number takes the values n = 1, 2, 3, . . .. The radialsolution was given by

Rnl(r) =
1

̺
Unl(̺) = ̺l

n−l−1∑

k=0

ck̺
ke−̺

ck+1 = ck
−e2λ+ 2(k + l + 1)

(k + l + 2)(k + l + 1)− l(l + 1)

, (8.65)
where the starting oe�ient c0 is determined by normalization. Furthermore wehad introdued the following shorthand notations,

κ =

√
2µ|E|

~2
(8.66)and

̺ =
µe2

~2

1

n
r =

1

n

r

a0

, (8.67)with
a0 =

~2

µe2
≈ 0.55A , (8.68)



8.2. THE HYDROGEN ATOM 151whih desribes the Bohr radius whih again is related to the harateristi �size�of the H-atom. Another representation of the radial solution was derived as
Rnl(r) = L2l+1

n−l−1

(
2
r

na0

)
e
− r

na0 (8.69)with
L2l+1
n−l−1(2̺) = ̺l

n−l−1∑

k=0

ck̺
k (8.70)being the Laguerre polynomials, whih are de�ned by a di�erential equation orby a reursion relation for ck. Summarizing these results we write down some ofthe eigenfuntions expliitly as follows,

ψ100 =

(
1

πa3
0

) 1
2

e
− r

a0 (8.71)
ψ200 =

(
1

32πa3
0

) 1
2
(

2− r

a0

)
e
− r

2a0 (8.72)
ψ210 =

(
1

32πa3
0

) 1
2 r

a0
e
− r

2a0 cos(θ) (8.73)
ψ21±1 = ∓

(
1

64πa3
0

) 1
2 r

a0

e
− r

2a0 sin(θ)e±iϕ (8.74)et.
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Chapter 9
Spin and Magneti Moment
9.1 Spin and SU(2)In hapter 7 we have found the irreduible representations of the rotation group.They orrespond to the rotations R in the spae spanned by the angular momen-tum eigenstates |j, m〉 with �xed j, e.g. Jx in the eigenbasis |j, m〉.Irreduible representation of the rotation group

j 0 1/2 1/2 1 1 1
m 0 1/2 −1/2 1 0 -1

j m0 0 0 0 . . .

1/2 1/2 0 1/2

1/2 −1/2 1/2 01 1 0 1/
√

2 01 0 1/
√

2 0 1/
√

21 -1 0 0 1/
√

2 0...1. SO(3)If the eigenstates |j, m〉 are taken in the ~x-basis, then these transformations153



154 CHAPTER 9. SPIN AND MAGNETIC MOMENTare the rotations of the wave funtions in position spae, and j an, byonstrution, only assume integer values, j = l (see hapter 7).
〈~x|l m〉 = Y m

l (Ω̂) (9.1)
〈~x|R(~α)|l m〉 = Y m

l (R−1(~α)Ω̂) (9.2)
R(~α) = exp

(
−i~α

~L

~

)
, (9.3)with

Ω̂ = (θ, ϕ), j = l = 0, 1, 2, . . . . (9.4)The rotation group is the SpeialOrthogonal group with 3 (real) symmetrigenerators, alled SO(3), with
detR = 1, ||v〉| = onst. (9.5)2. SU(2)The eigenstates |j, m〉 an also be in an abstrat vetor spae, withoutrelation to ~x-dependent funtion. Then half-integer and integer values of jare allowed, orresponding to even- and odd-dimensional representations.

• 2-dimensional representation: j = 1
2
, m = ±1

2We have expliitly alulated the generators in the 2-dimensional J2,
Jz eigenbasis:

Jk =
1

2
~σk, k = x, y, z, (9.6)where

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

) (9.7)are the Pauli matries, whih an be ombined as a vetor like ~σ =

(σx, σy, σz)
T .Properties of the Pauli matries



9.1. SPIN AND SU(2) 155(a) σ2
x = σ2

y = σ2
z = 1(b) σxσy = iσz , σzσx = iσy, σyσz = iσx() [σx, σy] = 2iσz, [σz, σx] = 2iσy, [σy, σz] = 2iσxThe general rotation operator in the |1

2
, m〉 basis is:

U(~α) = exp

(
−i1

2
(~α · ~σ)

) (9.8)
=

∞∑

n=0

1

n!

(
−i1

2
~α~σ

)n (9.9)
= cos(α/2)− i sin(α/2)(α̂ · ~σ), (9.10)where ~α represents the rotation axis and angle sine,
~α · ~σ = αxσx + αyσy + αzσz (9.11)

(~α · ~σ)2 = α2
xI − iαyαxσz + iαzαxσy

+iαxαyσz + α2
yI − iαzαyσx

−iαxαzσy + iαyαzσx + α2
zI (9.12)

= |~α|2I (9.13)
(~α · ~σ)2n = |~α|2nI (9.14)

(~α · ~σ)2n+1 = |~α|2n+1(α̂ · ~σ) (9.15)The rotation group is the Speial Unitary group with 2 (omplexhermitean) generators, alled SU(2), with
detU = 1, ||v〉| = const. (9.16)The generators expliitly read
(

1 0

0 −1

)
,

(
o u∗

u 0

)
. (9.17)By onstrution SU(2) and SO(3) have the same Lie algebra, theangular momentum algebra. There is a group homomorphism, whihmaps eah element of SU(2) to an element of SO(3):

h : SU(2) −→ SO(3) (9.18)
U(~α) −→ R(~α) (9.19)The mapping is de�ned by the following properties.



156 CHAPTER 9. SPIN AND MAGNETIC MOMENT(a) U(~α) is an arbitrary SU(2) transformation in the 2-dimensionalspae spanned by {|1
2
, m = ±1

2
〉}(b) U(~α) transforms the Pauli matries in suh a way that any vetorin the 3-dimensional spae spanned by σx, σy, σz,

σ(~b) := bxσx + byσy + bzσz (9.20)is rotated by R(~α). The Pauli matries an be seen as artesianbasis vetors of a 3-dimensional vetor spae.Proof:By omponents we get
U(αêz)σxU

†(αêz) = cos(α)σx + sin(α)σy (9.21)
U(αêz)σyU

†(αêz) = cos(α)σy − sin(α)σx (9.22)
U(αêz)σzU

†(αêz) = σz et., (9.23)sine
[cos(α/2)− i sin(α/2)σz]σx · [cos(α/2) + i sin(α/2)σz]

= [cos(α/2)− i sin(α/2)σz] · [cos(α/2)σx + i sin(α/2)σxσz]

= [cos(α/2)− i sin(α/2)σz] · [cos(α/2)σx + sin(α/2)σy]

= cos2(α/2)σx + 2 sin(α/2) cos(α/2)σy − sin2(α/2)σx

= {[cos(α)σx + sin(α)σy] · [cos(α/2)− i sin(α/2)σz]}σy
×[cos(α/2) + i sin(α/2)σz]

= {. . .}[cos(α/2)σy − sin(α/2)σx]

= cos2(α/2)σy − 2 sin(α/2) cos(α/2)σx − sin2(α/2)σy

= cos(α)σy − sin(α)σx et.Furthermore we an follow that
U ∈ SU(2) ⇔ −U ∈ SU(2), (9.24)sine
det (−U) = 1 (9.25)in the 2-dimensional representation, and
h(U) = R ⇔ h(−U) = R (9.26)



9.1. SPIN AND SU(2) 157yield. Therefore for eah R(~α) ∈ SO(3) there are exatly 2 elements
±U(~α), whih are mapped onto R(~α) by h.But +U(~α) and −U(~α) are equivalent,

U(~α) = cos
(α

2

)
I − i sin

(α
2

)
(α̂ · ~σ) (9.27)

−U(~α) = cos

(
α + 2π

2

)
I

−i sin
(
α + 2π

2

)
(α̂ · ~σ). (9.28)Physial meaning:of the abstrat Hilbert spae spanned by {|j = s = 1

2
, m = ±1

2
〉}.(a) s = 1

2
is an allowed representation of the rotation group.(b) m = ±1

2
is realized in nature as an internal, abstrat degree offreedom of ertain partiles (eletrons, protons, quarks,...)() It has no lassial analogon.(d) Sine the |1
2
, ±1

2
〉 state transforms aording to the rotation group

SU(2), s = 1
2
, m = ±1

2
is best visualized as an internal angularmomentum of the partile, and is alled spin of the partile.(e) However, the analogy is not omplete beause of the half-integervalue j = 1

2
~ and the spin eigenvalue of ~J2, s = 1

2
, whih annotbe hanged in ontrast to the orbital angular momentum l. s = 1

2is therefore a quantum number harateristi for the partile, likemass or harge, or |1
2
, ↑〉, |1

2
, ↓〉.(f) The vetors in the {|1

2
, ±1

2
〉}-spae are alled spinors,

(
ψ↑(~r)

ψ↓(~r)

)
, (9.29)where the ~r-dependene not neesary.

• 3-dimensional representation of SU(2): s = 1, m = 0,±1The j = l = 1 representation is realized by the rotation of wavefuntions Y m
l (θ, ϕ). It an also be realized as a 3-dimensional repre-sentation of SU(2), ating on a 3-dimensional spinor spae,




ψ1(~r)

ψ0(~r)

ψ−1(~r)


 , s = 1, ms = 1, 0,−1 (9.30)



158 CHAPTER 9. SPIN AND MAGNETIC MOMENTThe 3-omponents are not identi�ed with the orbital angular momen-tum m, but with the internal ms.Generators (see hapter 7)
Sx =

~√
2




0 1 0

1 0 1

0 1 0


 (9.31)

Sy =
~√
2




0 −i 0

i 0 −i
0 i 0


 (9.32)

Sz = ~




1

0

−1


 (9.33)Note:These matries do not span all 3-dimensional hermitean matries.There also exists an alternative basis for the generators.The 3-dimensional representations of SU(2) are the rotations ating onvetors (or vetor �elds) in 3-dimensional spae. The most prominentexamples of vetor �elds are gauge �elds ~A,

(
~p− e

c
~A
)
, (9.34)in partiular the eletromagneti vetor potential ~A. The time om-ponent φ of the 4-vetor Aµ is not relevant here, sine we onsideronly rotations in position spae. All vetor �elds arry a spin s = 1,

ms = 1, 0,−1, as an internal degree of freedom, in addition to angularmomentum.Examples:(a) Gauge �elds(b) Photons, partiles of the eletromagneti �eld, whih have spin 1.



9.2. MAGNETIC MOMENT 1599.2 Magneti momentWhen a magneti �eld ~B is present in a system, we an alulate from theShrödinger equation, how the angular momentum ~L ouples to ~B and hene,what is the magneti moment ~M related to ~L. In this ase the Shrödingerequation reads
[

1

2m

(
~p− −e

c
~A

)2

+ V (r)

]
ψ(~r) = Eψ(~r), (9.35)where −e is the eltron harge. Now we onsider the kineti term and derive thesquared brakets.

(
~p− −e

c
~A

)2

= ~p 2 +
e

c
~p ~A +

e

c
~A~p+

(e
c

)2
~A 2 (9.36)

= ~p 2 +
e

c

[
−i~~∇ · ~A + ~A · ~p

]

+
e

c
~A~p+

(e
c

)2
~A 2 (9.37)

∼= ~p 2 + 2
e

c
~A~p, (9.38)where the quadrati term in ~A is negleted for small ~A.

~B = [~∇× ~A] ⇒ ~A = −1

2

[
~r × ~B

]
, (9.39)for ~B =onst. on a sale of ψ(~r). We then get

~A~p = −1

2
[~r × ~B]~p (9.40)

=
1

2
~B[~r × ~p] (9.41)

=
1

2
~B~L (9.42)and by this obtain

[
− ~2

2m

1

r2

∂

∂r
r2 ∂

∂r
+

~L 2

2mr2
− −e

2mc
~B~L+ V (r)

]
ψ(~r) = Rψ(~r), (9.43)with

e

2mc
~B~L = ~B · ~M. (9.44)
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• Sine the energy of a magneti moment ~M in a ~B-�eld is given by V =

− ~B ~M , we assign the magneti moment,
~M =

e~

2mc

~L

~
= µB

~L

~
, (9.45)to the angular momentum ~L. Furthermore we de�ne

µB :=
e~

2mc
= 0.58 · 10−8 eV

G
(9.46)as the Bohr magneton.

• Magneti moment of spinAt the present state of our theoretial development it is not obvious that amagneti moment is onneted with the internal spin degree of freedom.When quantum mehanis is formulated in a relativistially invariant way(QMII, Relativisti quantum mehanis), the existene of spin, its valuefor eletrons, s = 1
2
, and its magneti moment follow as a neessary onse-quene.The result is:

~M = gµB
~S

~
, (9.47)where g is the Landé fator whih has for eletrons in vauum the numerialvalue

g ≈ 2. (9.48)Due to vauum �utuations orretions must be taken into aount, suhthat:
g = 2 · (1.001159652140(±28)) theory (9.49)

= 2 · (1.0011596521884(±43)) experiment (9.50)The measurement of the g-fator is used as a preision test on quantum�eld theory.



9.2. MAGNETIC MOMENT 1619.2.1 Normal Zeeman e�etThe spetrum of atoms in a magneti �eld ~B is measured by optial spetrosopy.
• For ~B = 0 the (2l + 1) states |l, l〉, |l, l − 1〉, . . . , |l, −l〉 are degenerate.
• If we hoose the z-axis parallel to the magneti �eld ~B, we get for ~B 6= 0

[
− ~2

2m

1

r2

d

dr
r2 d

dr
+

~2l(l + 1)

2mr2
− µBmB

]
ψnlm(~r)

= Enmψnlmm, (9.51)where m is the magneti quantum number and µBmB is equal to µBBLz/~.The (2l + 1) states split in a magneti �eld with
∆Em(B) = −µBmB , (9.52)and

m = l, . . . ,−l. (9.53)
B

-2-1
21
0l = 2

E

m

En(B = 0)

Figure 9.1: Splitting of atomi spetral lines into equidistant �multiplets�Analogous splitting of spin states
∆Em(B) = −gµBmB , (9.54)with m = ±1/2.
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Chapter 10
Addition of Angular Momenta
Now we want to treat the problem of adding several angular momenta to onetotal angular momentum.
• A partile may have orbital angular momentum and spin, e.g.

(
ψ↑(~r)

ψ↓(~r)

)
. (10.1)

• Two or more partiles with angular momentum and/or spin, e.g.
ψ(~r1) ψ(~r2). (10.2)Eah angular momentum li- or spin si-degree of freedom orresponds to its own

(2li + 1) or (2si + 1) - dimensional Hilbert spae. We onsider only the ase of 2angular momenta j1, j2, where eah one an be either orbital angular momentum,
l, or spin, s.The total Hilbert spae is the diret produt spae of the Hilbert spaes foreah j1, j2,

H = Hj1 ⊗Hj2 . (10.3)A basis set of H are the (2j1 + 1) (2j2 + 1) - dimensional produt states, produtbasis, with m1 = j1, ..,−j1, m2 = j2, ..,−j2,
| j1m1〉 ⊗ | j2m2〉 = | j1m1, j2m2〉 (10.4)
~J2
i | j1m1, j2m2〉 = ~2ji (ji + 1) | j1m1, j2m2〉 (10.5)

(Ji)z | j1m1, j2m2〉 = ~mi |j1m1, j2m2〉 (10.6)163



164 CHAPTER 10. ADDITION OF ANGULAR MOMENTAThe total angular momentum operator is the sum of the individual angular mo-mentum operators due to the orrespondene priniple,
~J = ~J1 ⊗ 1 + 1⊗ ~J2. (10.7)This is a sum of diret produts of operators where ~J1 is ating on the Hilbertspae of angular momentum 1 and where the identity 1 is leaving states in theHilbert spae of angular momentum 2 invariant.In the following we will use the shorthand notation
~J = ~J1 + ~J2, (10.8)where the diret produt is taitly understood. We have
[Jkx, Jly] = i~ Jkzδkl, k, l = 1, 2 (10.9)suh that
[Jx, Jy] =

∑

k,l=1,2

[Jkx, Jlx] = i~
∑

k=1,2

Jkz = i~Jz (10.10)
[Jz, Jx] = i~Jy (10.11)
[Jy, Jz] = i~Jx. (10.12)Problem:What are the eigenstates of the total angular momentum J2, Jz?

10.1 Example: Two spins si = 1
2
, (i = 1, 2)

si =
1

2
, mi =

{
1
2
≡ ↑

−1
2
≡ ↓

(10.13)



10.1. EXAMPLE: TWO SPINS SI = 1
2
, (I = 1, 2) 165The produt basis in the ket-notation reads

|1, 2〉 = |s1, m1 ; s2, m2〉 (10.14)
| ↑, ↑〉 = |1

2
,

1

2
;

1

2
,

1

2
〉 (10.15)

| ↑, ↓〉 = |1
2
,

1

2
;

1

2
, −1

2
〉 (10.16)

| ↓, ↑〉 = |1
2
, −1

2
;

1

2
,

1

2
〉 (10.17)

| ↓, ↓〉 = |1
2
, −1

2
;

1

2
, −1

2
〉 (10.18)whih beomes in oordinate representation of the produt basis

| ↑, ↑〉 =




1

0

0

0


 (10.19)

| ↑, ↓〉 =




0

1

0

0


 (10.20)

| ↓, ↑〉 =




0

0

1

0


 (10.21)

| ↓, ↓〉 =




0

0

0

1


 . (10.22)

What are the eigenstates and eigenvalues of ~S2 = (~S1 + ~S2)
2 and Sz =

S1z + S2z?



166 CHAPTER 10. ADDITION OF ANGULAR MOMENTABy de�nition, Sz is diagonal in the produt basis so that we get
Sz| ↑↑〉 = (S1z + S2z)| ↑↑〉 (10.23)

= ~

(
1

2
+

1

2

)
| ↑↑〉 = ~| ↑↑〉 (10.24)

Sz| ↑↓〉 = ~

(
1

2
− 1

2

)
| ↑↓〉 = 0| ↑↓〉 (10.25)

Sz| ↓↑〉 = 0| ↓↑〉 (10.26)
Sz| ↓↓〉 = −~| ↓↓〉. (10.27)In oordinate representation (produt basis) we then get
Sz → ~




↑↑
1

↑↓
0

↓↑
0

↓↓
0

0 0 0 0

0 0 0 0

0 0 0 −1



, (10.28)whih is obviously diagonal. The eigenvalue Sz = 0 is twofold degenerate, sineit is realized by the on�gurations | ↑↓〉 and | ↓↑〉. Sine

~S2 = (~S1 + ~S2)
2 = ~S2

1 + ~S2
2 + 2 ~S1 · ~S2 (10.29)and

[
~S2, ~S2

i

]
= 0 i = 1, 2 (10.30)

[
~S2, Siz

]
= 2

[
~S1 · ~S2, Siz

]
6= 0 i = 1, 2 (10.31)are valid, we annot expet that there is a simultaneous eigenbasis of ~S2 and Siz.In oordinate representation (produt basis) we also get

~S2 → ~2




2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2


 , (10.32)whih is diagonal, too. The produt states | ↑↑〉, | ↓↓〉 with all mi equal areeigenstates of ~S2, the �mixed� states | ↑↓〉, | ↓↑〉 are not.
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2
, (I = 1, 2) 167

~S2 an be diagonalized in the m = 0 subspae {| ↑↓〉, | ↓↑〉} with eigenstates andeigenvalues.
| s = 0, m = 0〉 = 1√

2
( | ↑↓〉 − | ↓↑〉 ) (10.33)

s (s+ 1) = 0

| s = 1, m = 0〉 = 1√
2

( | ↑↓〉+ | ↓↑〉 ) (10.34)
s (s+ 1) = 2The arbitrary phase prefator is by onvention hosen to be 1. Hene, we havethe 4 states with well-de�ned total s,m.

| 0 0〉 =
1√
2

( | ↑↓〉 − | ↓↑〉 ) (10.35)
|1 1〉 = | ↑↑〉 (10.36)
| 1 0〉 =

1√
2

( | ↓↑〉+ | ↓↑〉 ) (10.37)
| 1− 1〉 = | ↓↓〉, (10.38)where the state with s = 0, m = 0 is a singlet and the states s = 1, m = 0,±1form a triplet. The produt spae is therefore deomposed into subspaes withwell-de�ned s, i.e.
1

2
⊗ 1

2
= 1⊕ 0. (10.39)The 1 represents a triplet and the 0 represents a singlet.

• Cheking the degeneray yields
2 · 2 = 3 + 1. (10.40)

• Analysing the symmetries results in an antisymmetri singlet and a sym-metri triplet. (→ Pauli's priniple, He atom ground state)
• Whih basis to hoose?For

H = −g q

2mc
~B (~S(1) + ~S(2)) (10.41)



168 CHAPTER 10. ADDITION OF ANGULAR MOMENTAone an see that
S(1)
z , S(2)

z (10.42)is a good hoie and for
H = λ ~S(1)~S(2) =

λ

2
(~S2 − ~S(1)2 − ~S(2)2) (10.43)one should hoose the basis

~S, Sz. (10.44)10.2 Generalization of 10.1
• Jz diagonal in the produt basis
• The naiv method is to diagonalize ~J2, but a better method is to use theraising and lowering operators.
• Possible values of jThe maximum values of j are given by

jmax = j1 + j2 (10.45)and
jmin = |j1 − j2|. (10.46)Cheking the degeneray here gives
j1+j2∑

j=j1−j2

(2j + 1) =

2j2∑

k=0

2 (j1 − j2 + k) + 1 (10.47)
= (2 (j1 − j2) + 1) (2j2 + 1)

+2j2 (2j2 + 1) (10.48)
= (2j1 + 1) (2j2 + 1). (10.49)Example: 1

2
⊗ 1

2At �rst we onsider the ase s = 1.
| 1 1〉 = | ↑ ↑〉 (10.50)



10.2. GENERALIZATION OF 10.1 169This state is by phase onvention properly normalized (Gordon-Shortley). Onthe one hand we have
S−| 1 1〉 =

√
2~ | 1 0〉 (10.51)and on the other hand

(S
(1)
− + S

(2)
− ) | ↑↑〉 = ~ ( | ↓↑〉+ | ↑↓〉 ) (10.52)so that we get

| 1 0〉 = 1√
2

( | ↑↓〉+ | ↓↑〉 ). (10.53)The state | 1, −1〉 = | ↓↓〉 is obvious, but an also be alulated as follows,
S−| 1 0〉 = ~

√
2 | 1− 1〉 (10.54)

(S
(1)
− + S

(2)
− )

1√
2

( | ↑↓〉+ | ↓↑〉 ) =
√

2~ | ↓↓〉, (10.55)i.e.
| 1, −1〉 = | ↓↓〉. (10.56)Now we onsider the ase s = 0. The state | 0 0〉 has to be a linear ombinationof all states whih ful�ll m = 0, i.e. here
| 0 0〉 = A| ↑↓〉+B | ↓↑〉, (10.57)whih indeed has m = 0. The normalization �nally yields
1√
2

( | ↑↓〉 − | ↓↑〉 ). (10.58)Cheking that there is really no other possible state gets us
S±| 0 0〉 = 0, (10.59)like expeted.We an formulate this proedure in a more general form. The maximal stateis given by
| j1 + j2, j1 + j2〉 = | j1 j1〉 ⊗ | j2 j2〉. (10.60)From here on all states with j = j1 + j2 an be generated by the ation of J−.The orthonormality ondition gives us
| j1 + j2 − 1, j1 + j2 − 1〉 ⊥ | j1 + j2, j1 + j2 − 1〉, (10.61)i.e. that only two terms an appear in linear ombinations.



170 CHAPTER 10. ADDITION OF ANGULAR MOMENTA10.3 Clebsh-Gordon Coe�ientsIt is desired to onstrut from the basis
|j1m1 j2 m2〉 = |j1 m1〉 |j2m2〉 (10.62)the eigenvetors of Jz, ~J2 whih form a new basis. What we want to do is nothingelse but a hange of the basis. Sine ~J2

1 and ~J2
2 ommute with every omponentof ~J , we, hene, obtain

[
Jz, ~J

2
1

]
=
[
Jz, ~J

2
2

]
=
[
~J2, ~J2

1

]
=
[
~J2, ~J2

2

]
= 0. (10.63)The eigenvetors of Jz and ~J2 an be required to be simultaneously eigenvetorsof ~J2

1 and ~J2
1 also. At this point it is to stress that ~J2 does not ommute with

J1z or J2z! In the subspae of the simultaneous eigenvetors of ~J2
1 and ~J2

2 witheigenvalues j1 and j2 respetively we an write the transformation equation
| j m, j1 j2〉 =

∑

m1m2

| j1m1 j2m2〉〈j1m1 j2m2| j m j1 j2〉, (10.64)whih onnets the two sets of normalized eigenvetors. The problem of addingangular momenta is thus the problem of determining the transformation oe�-ients
〈j1m1 j2 m2| j m j1 j2〉. (10.65)These elements of the transformation matrix are alled vetor addition or Clebsh-Gordon or Wigner oe�ients.Now we apply the operator Jz = J1z + J2z to (10.64) and get
Jz | j m, j1 j2〉 = m~| j m, j1 j2〉, (10.66)and
(J1z + J2z) | j m, j1 j2〉 = (m1 +m2)~ | j m, j1 j2〉. (10.67)By this we an onlude the ondition
m = m1 +m2, (10.68)



10.3. CLEBSCH-GORDON COEFFICIENTS 171beause otherwise the Clebsh-Gordon oe�ients vanish. Doing the same withthe operators J+ and J− yields after some lengthy alulations the ondition
|j1 − j2| ≤ j ≤ j1 + j2. (10.69)One of the most useful symmetry relations for the Clebsh-Gordon oe�ientsreads

〈j1m1 j2 m2| j m j1 j2〉 (10.70)
= (−1)j−j1−j2〈j2 m2 j1m1| j m j2 j1〉 (10.71)
= 〈j2 −m2 j1 −m1| j −mj2 j1〉. (10.72)Another useful relation for the transition from j2 m2 j m to j, −m, j2, −m2 isgiven by

(−1)j1−m1

√
2j + 1

2j2 + 1
. (10.73)Sine the Clebsh-Gordon oe�ients are real, the transformation matrix is or-thogonal. Furthermore m1 = j1 is positive by phase onvention.The losed formula �nally reads

〈j1m1 j2 m2|j m j1 j2〉 (10.74)
=

√
(2j+1) (j1+j2−j)! (j1−m1)! (j2−m2)! (j+m)!

(j1+j2+1)! (j1−j2+j)! (j2−j1+j)! (j1+m1)! (j2+m2)! (j−m)!

×δm,m1+m2

j−m∑

n=0

(−1)j1−m1−n (j−m
n

)

× (j1+m1+n)! (j2+j−m1−n)!
(j1−m1−n)! (j2−j+m1+n)!

. (10.75)This beomes in partiular,
〈j1 j2 j2 j − j1| j j〉 =

√
(2j1)! (2j+1)!

(j1+j2+j+1)! (j1−j2+j)! . (10.76)
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Chapter 11
Time-Independent PerturbationTheory
Most Hamiltonian problems are not exatly solvable, beause the potential is tooompliated. This and the following two hapters are devoted to approximatesolution methods.
• Perturbation theoryProblems where there is a small term, a perturbation, in the Hamiltonian,suh that without this term the problem is exatly solvable. The theoryprovides an approximate solution in the form of a systemati (Taylor) ex-pansion in powers of a small parameter.
• Time-independent perturbation theoryIn this ase the perturbation is time-independent. The theory providesa power expansion of the eigenstates and eigenenergies of the ompleteHamiltonian.
• Time-dependent perturbation theoryHere, the perturbation is expliitly time-dependent. In this ase, stationaryeigenstates of the omplete Hamiltonian do not exist. The theory providesan expansion of the time-dependent eigenstates in terms of the (station-ary) eigenstates of the unperturbed Hamiltonian. Thus, it desribes how atime-dependent perturbation an indue transitions between the stationary173



174 CHAPTER 11. TIME-INDEPENDENT PERTURBATION THEORYstates of the unperturbed Hamiltonian. Further developments of this the-ory allow also to desribe partile-partile interations, sine one moving,e.g. harged, partile provides a time-dependent potential for the otherpartile.
• Non-perturbative methodsVariational methods and theories, WKB approximation11.1 Time-independent perturbation theory: For-malism non-degenerate Perturbation theoryThe total Hamiltonian now inludes a perturbation operator, i.e.
H = H0 + λV, (11.1)where H0 is the unperturbed Hamiltonian with orthonormal eigenstate basis

{|n0〉| n = 1, 2, ...}, whih is assumed to be known, and λV is the perturbation,whih is supposed to be �small� in a sense to be spei�ed later. For the parameter
λ we laim

λ ∈ R, λ≪ 1, (11.2)e.g. the potential strength in units of some harateristi energy. λ is the formalsmall parameter of the expansion.The exat eigenstates and eigenenergies of H , expressed in a perturbation se-ries, i.e. power series in λ, read
|n〉 = |n0〉+ |n1〉+ |n2〉+ ... (11.3)
En = E0

n + E1
n + E2

n + ..., (11.4)where
|nk〉 ∼ λk, Ek

n ∼ λk. (11.5)The |nk〉, Ek
n are determined by omparing the oe�ients of the expansion ineah order λk.



11.1. TIME-INDEPENDENT PERTURBATION THEORY 1751st order: Keep terms up to O(λ1)

(H0 + λV ) [ |n0〉+ |n1〉+O(λ2) ] = (E0
n + E1

n +O(λ2)) [ |n0〉+ |n1〉+O(λ2) ]

H0 |n1〉+ λV |n0〉 = E0
n |n1〉+ E1

n |n0〉+O(λ2),beause O(λ0) ful�lls
H0 |n0〉 = E0

n |n0〉. (11.6)a) Corretion to the eigenenergySine |n0〉 is normalized, i.e.
〈n0|n0〉 = 1, (11.7)we get by multiplying equation (11.6) by 〈n0|

〈n0|H0|n1〉 = E0
n〈n0|n1〉 (11.8)and

E1
n = 〈n0|λV |n0〉 . (11.9)This is a �rst order orretion to the energy eigenvalue. This orretion is,as demanded, linear in λ and it involves only eigenstates of the unperturbedHamiltonian.b) Corretion to the eigenstate:We make an expansion in {|n〉} as follows,

|n1〉 =
∑

m

|m0〉〈m0|n1〉. (11.10)Assuming
E0
m 6= E0

n, ∀m 6= n, (11.11)i.e. we apply a non-degenerate perturbation theory, we get by multiplyingequation (11.6) by 〈m0|

〈m0|H0|n1〉+ 〈m0|λV |n0〉 = 〈m0|E0
n|n1〉 (11.12)

⇔ E0
m〈m0|n1〉+ 〈m0|λV |n0〉 = E0

n〈m0|n1〉. (11.13)
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|n0〉

|n1〉
|n0

⊥〉

(m 6= n)

Figure 11.1: Vetor representation of the eigenstate
The expansion oe�ients for m 6= n therefore are

〈m0|n1〉 =
〈m0|λV |n0〉
E0
n − E0

m

. (11.14)The expansion oe�ient for m = n and an = 〈n0|n1〉 is determined by thenormalization of the total eigenstate, up to order O(λ1).
|n〉 = |n0〉+ |n1〉+O(λ2) (11.15)

= (1 + an)|n0〉+
∑

m6=n
|m0〉 〈m0|λV |n0〉

E0
n−E0

m
(11.16)

〈n|n〉 = |1 + an|2 +
∑

m6=n

|〈m0|λV |n0〉|2
(E0

n−E0
m)2

(11.17)
= |1 + an|2 +O(λ2) (11.18)
= 1 + |an|2 + an + a∗n (11.19)
= 1 +O(λ2) + an + a∗n (11.20)
!
= 1 +O(λ2) (11.21)By this we get

an = iα, α ∈ R (11.22)and
1 + an = eiα +O(λ2). (11.23)



11.1. TIME-INDEPENDENT PERTURBATION THEORY 177The omponent of |n1〉 parallel to the unperturbed |n0〉 is only hanged bya phase fator in O(λ1). We an therefore multiply |n1〉 by an overall phasefator, i.e.
|n〉 −→ |n〉 e−iα = |n0〉+

∑

m6=n
|m0〉 〈m0|λV |n0〉

E0
n−E0

m

×(1− iα +O(λ2)) (11.24)
= |n0〉+

∑

m6=n
|m0〉 〈m0|λV |n0〉

E0
n−E0

m

×(1− O(λ) +O(λ2)). (11.25)We then get the �rst order orretion to the eigenstates as
|n〉 = |n0〉+

∑

m6=0

|m0〉 〈m0|λV |n0〉
E0

n−E0
m

. (11.26)This orretion involves only eigenstates and energies of the unperturbedHamiltonian H0 and up to the order O(λ1) the omponent of |n1〉 parallelto the orresponding unperturbed |n0〉 is not hanged by the perturbation.Furthermore
|n1〉 ⊥ |n0〉 (11.27)is valid.2nd order:

(H0 + λV ) [ |n0〉+ |n1〉+ |n2〉+O(λ3) ] (11.28)
= (E0

n + E1
n + E2

n) [ |n0〉+ |n1〉+ |n2〉 ], (11.29)whih is ful�lled in O(λ0), O(λ1) by onstrution of E1
n, |n1〉. We onlyonsider terms of seond order, i.e. O(λ2).

H0 |n2〉+ λV |n1〉 = E0
n |n2〉+ E1

n |n1〉+ E2
n |n0〉 (11.30)By multiplying this equation by 〈n0| and paying attention to the relation

〈n0|n1〉 = 0, (11.31)



178 CHAPTER 11. TIME-INDEPENDENT PERTURBATION THEORYwe get
〈n0|H0|n2〉 = E0

n〈n0|n2〉, (11.32)and by this the 2nd order orretion to the energy eigenvalues,
E2
n = 〈n0|λV |n1〉 =

∑

m6=n

|〈n0|λV |m0〉|2
E0

n−E0
m

. (11.33)For the ground state, i.e. n = 0, we obtain
E2

0 < 0, (11.34)whih means that the 2nd order orretion to the ground state energy isalways < 0.Disussion of the validity of perturbation theoryThe perturbation series gives meaningful results, i.e. it onverges, if the terms ofthe perturbation series derease in size fast enough as the order (λk) inreases,
∣∣∣∣
〈m0|λV |n0〉
E0
n −E0

m

∣∣∣∣≪ 1. (11.35)In general, this is the ase for small λ. But it always fails for arbitrary λ , if
E0
m −→ E0

n or E0
m = E0

n for some m 6= n .In this ase one must apply degenerate perturbation theory. The formulas for
|n1〉 and for E2

n show that n given states |m0〉 ontribute the more to the or-retion to |n0〉, the smaller the energy di�erene between the two states is. If
E0
m = E0

n, the state is unstable to a perturbation, |m0〉 and |n0〉 �mix� strongly,not proportional to λ.
11.2 Degenerate perturbation theoryThe full Hamiltonian in perturbation theory was given by

H = H0 + λV. (11.36)



11.2. DEGENERATE PERTURBATION THEORY 179Now we onsider the ase that H0 has a degenerate subspae of eigenstates
M = {|m1〉, ..., |mk〉}, (11.37)with
E0
m1

= E0
m2

= ... = E0
mk

= E0
m. (11.38)Then, the orretions due to λV annot be alulated using the method derivedin the last setion. We have to distinguish between the following ases.a) λV is also degenerate in this subspae M

λV |mi〉 = vmi
|mi〉 (11.39)Then H = H0 + λV is also diagonal in this subspae,

(H0 + λV ) |mi〉 = (E0
mi

+ vmi
) |mi〉, (11.40)and the problem is already solved in the spae M .b) λV is non-degenerate in this subspae MExample:Consider H0, λV in an eigenstate basis representation of H0.

H0 =



E0
m 0

E0
m

0 E0
m


 (11.41)

λV = λ




0 v12 v13

v21 0 v23

v31 v32 0


 (11.42)Solution:Diagonalize λV in the degenerate subspae M . Sine H0 is degenerate in M , itremains diagonal by this proedure.

• The diagonalization problem of λV in the degenerate subspae(s) of H0 isoften tratable, sine the dimension of the subspae is often low, e.g. d = 2.
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• By diagonalization of λV in the subspae M , the eigenvalue problem of theomplete system H0 + λV is solved exatly in the degenerate subspae M .
• This basis transformation lifts, in general, the degeneray of H0 + λV inthe degenerate subspae of H0. One an then proeed in the new basis,using non-degenerate perturbation theory.
• λV an have matrix elements 〈n|λV |mi〉 whih onnet states in the de-generate subspae M with states outside of M . These matrix elements arenot taken into aount in the diagonalization of λV within M . They aretreated afterwards by regular perturbation theory.Example: Degenerate perturbation theoryAssume that an eigenstate basis of H0 is given.
H0 =




E0
1 0

E0
2

E0
m

0 E0
m


 (11.43)

λV =




0 v12 v13 v14

v∗12 0 v23 v24

v∗13 v∗23 0 vm

v∗14 v∗24 v∗m 0


 , (11.44)with

M =

(
0 vm

v∗m 0

)
, (11.45)i.e. only rotations in the subspae M .1. Diagonalize H0 + λV in M .

(
E0
m − E vm

v∗m E0
m −E

)(
a1

a2

)
= 0 (11.46)

(E0
m − E)2 − |vm|2 = 0 (11.47)
⇔ E0

m ± |vm| = E1,2, (11.48)with orresponding new eigenvetors |m̃1〉, |m̃2〉.



11.3. EXAMPLE: STARK EFFECT 1812. Rede�ne H0, λV in the new eigenstate basis.
H̃0 =




E0
1 0

E0
2

E0
m − |vm|

0 E0
m + |vm|


 (11.49)

λṼ =




0 v12 v13 v14

v∗12 0 v23 v24

v∗13 v∗23 0 0

v∗14 v∗24 0 0


 (11.50)The perturbation is removed in M .3. Proeed with H̃0, λṼ using non-degenerate perturbation theory.11.3 Example: Stark e�etConsider a harged partile with harge q in a binding potential, subjeted to anexternally applied, homogenous eletri �eld

E = −∂φ
∂x
. (11.51)Here, the binding potential is the one of the harmoni osillator (see �gure 11.2),so that we get the full Hamiltonian

H = H0 + V 0 − λV (11.52)
=

p2

2m
+

1

2
mω2x2 − qEx. (11.53)The perturbation operator x in an eigenstate basis of H0 reads

x =
√

~

2mω
(a+ a†). (11.54)Hene, we get by this

H = ~ω(a†a + 1
2
)− qE

√
~

2mω
(a+ a†). (11.55)
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x

−qEx

V0

V0 + λV (again paraboli)V

Figure 11.2: Binding potential of the harmoni osillatorThe shifted potential is given by
1

2
mω2x2 − qEx =

1

2
mω2

(
x− qE

mω2

)2

− (qE)2

2mω2
, (11.56)where the term (x− qE/2mω2)2 is the shifted harmoni osillator and the term

−(qE)2/2mω2 represents a onstant downward shift of the energy.The energy eigenvalue orretion of �rst order perturbation theory yields
E1
n = 〈n0|qE

√
~

2mω
(a+ a†)|n0〉 = 0, (11.57)and in x representation

E1
n =

∫
dx |ψ0

n(x)|2 qEx = 0, (11.58)sine |ψ0
n(x)|2 is symmetri and qEx is antisymmetri. The alulation of theseond order orretion reads

E2
n =

∑

m6=n

|〈m0 |qE
√

~

2mω
(a+a†) |n0〉|2

E0
n−E0

m
(11.59)

= (qE)2

(√
~

2mω

)2 [
|〈n0+1| a† |n0〉|2

E0
n−E0

n+1
+ |〈n0−1| a |n0〉|2

E0
n−E0

n−1

] (11.60)
= (qE)2 ~

2mω

[
|〈n0+1| a† |n0〉|2

−~ω
+ |〈n0−1| a |n0〉|2

~ω

] (11.61)
= (qE)2 ~

2mω

[
−n+1

~ω
+ n

~ω

] (11.62)
= − (qE)2

2mω2 (11.63)
< 0, (11.64)



11.4. EXAMPLE: FINE STRUCTURE OF ATOMIC SPECTRA 183whih is also lear from the sketh of the potential.Seletion rule:The linear potential −qEx onnets only states n± 1 with n.The �rst order orretion to the eigenstates an be derived as
|n〉 = |n0〉+

∑

m6=n
|m0〉 〈m

0| −qE
√

~

2mω
(a+a†) |n0〉

E0
n−E0

m
(11.65)

= |n〉 − qE
~ω

√
~

2mω
(
√
n |(n− 1)0〉 −

√
n + 1 |(n+ 1)〉 (11.66)Remark:For a �nite binding potential, e.g. V (r) = e2

r
, as in �gure 11.3, the partile maybe ionized from the potential. ionizationtunnelingr

Figure 11.3: Binding potential
11.4 Example: Fine struture of atomi spetraThere are relativisti orretions to the kineti energy in the hydrogen atom.These will be treated systematially in the ourse of Quantum Mehanis II. Therelativisti treatment implies,(1) the existene of spin,(2) the oupling of the spin of a partile to its angular momentum,



184 CHAPTER 11. TIME-INDEPENDENT PERTURBATION THEORY(3) and terms proportional to p4, p6... in the kineti energy,
Ekin =

√
m2c4 + p2c2 −mc2 = p2

2m
− p4

8m3c2
+ ... (11.67)The relativisti orretions are suppressed by a fator

p2

4m2c2
≪ 1 (11.68)for the hydrogen atom, whih we will here not onsider. Nevertheless itdoes play a signi�ant role in heavy atoms, where the inner shells are tightlyloalized near the nuleus, beause of its big harge Ze, so that the average

〈p2〉 beomes relativistially large.We will now onsider theSpin-Orbit oupling:Visualization:In the rest frame of an eletron bound to a hydrogen nuleus, the nuleus moves,lassially speaking, in a irle around the eletron (�gure 11.4), and generates amagneti �eld,
~B = − e

c

~v × ~r
r3

=
e~L

mcr3
, (11.69)with e being the proton harge, whih is positive, and ~v the veloity of eletronwhih is equal to the proton's veloity, but with opposite sign.

r

~vm

Figure 11.4: Spin-orbit visualization



11.4. EXAMPLE: FINE STRUCTURE OF ATOMIC SPECTRA 185The eletron spin has a magneti dipole energy in this B-�eld,
H̃spin-orbit = − e

mc

~µ~L

r3
(11.70)

=
e2

m2c2
1

r3
~S · ~L, (11.71)with

~µ = g
−e
2mc

~S, g ≈ 2. (11.72)The relativisti treatment gives the orret result,
Hspin-orbit =

1

2

e2

m2c2
1

r3
~S · ~L , (11.73)where the prefator 1/2 is the so-alled Thomas fator.Corretions to the energy eigenvalues due to Hs.o.One an write ~S · ~L in terms of the total angular momentum,

~S · ~L =
1

2
( ~J2 − ~L2 − ~S2), (11.74)with

~J2 = (~L+ ~S)2. (11.75)In the basis of the total angular momentum eigenstates one gets
〈j′m′; l′,

1

2
|Hspin-orbit |jm; l,

1

2
〉 (11.76)

= δjj′δmm′ δll′
e2

4m2c2
~2 [ j(j + 1)− l(l + 1)− 3

4
]

×
〈

1

r3

〉

nl

, (11.77)With j = l ± 1
2
one furthermore gets

E1spin-orbit,nl =
~2e2

4m2c2

〈
1

r3

〉

nl

{
l, j = l + 1

2

−(l + 1), j = l − 1
2

, (11.78)
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〈

1

r3

〉

nl

=
1

a3
0

1

n3l(l + 1
2
)(l + 1)

. (11.79)Therefore the �rst order energy eigenvalue orretion reads
E1
s.o.,nl =

1

4
mc2

(
e2

~c

) {
l

−(l+1)

}

n3l(l + 1
2
)(l + 1)

, (11.80)whih is valid for l = 0, 1, 2, .... The fator
e2

~c
≈ 1

137
(11.81)is alled �ne struture onstant. The heart of the matter is that the spin-orbitsplitting lifts the l-degeneray of the hydrogen spetrum.



Chapter 12
Time-Dependent PerturbationTheory
We now onsider time-dependent problems, where the Hamiltonian an be de-omposed into a time-independent part H0, whose eigenstates and eigenenergiesare assumed to be known, and a time-dependent perturbation V (t),

H = H0 + V (t). (12.1)This leads us to the question of how to desribe time-dependene in quantummehanis in general.12.1 Representations of time-dependene in quan-tum mehanis12.1.1 Shrödinger pitureAny physial property of a system in a state |ψ〉 is desribed by the expetationvalue of the appropriate operator Ω,
〈Ω(t)〉 = 〈ψ|Ω|ψ〉, (12.2)whih an be time-dependent. 187



188 CHAPTER 12. TIME-DEPENDENT PERTURBATION THEORYShrödinger pitureLet Ωs be a time-independent operator, exept for possible expliit t-dependene,and let |ψs〉 = |ψs(t)〉 be a time-dependent state. The equation of motion for
|ψ(t)〉 then reads

i~
d

dt
|ψs(t)〉 = H|ψs(t)〉. (12.3)The time evolution of |ψ(t)〉 is formally desribed by the time evolution operator

U(t, t0),
|ψs(t)〉 = U(t, t0)|ψ(t0)〉, (12.4)with the initial ondition |ψ(t0)〉. In hapter 5 we had given a proedure of howto alulate U in x-representation by path integrals. This will not be onsideredhere.Example: H time independentThen
|ψs(t)〉 = e−

i
~
Ht|ψ(t0)〉 (12.5)is a formal solution of the Shrödinger equation

i~ d
dt
|ψs(t)〉 = H|ψs(t)〉, (12.6)with

U(t, t0) = e−
i
~
Ht. (12.7)If H = H0+V (t) is time-dependent, then U(t, t0) annot be written in the simpleexponential form, sine the t-dependene of H would give an additional term in

d
dt
|ψ(t)〉 .It is our goal to develop an e�ient, perturbative method for alulating U(t, t0)and, hene, |ψs(t)〉 for suh time dependent problems.



12.1. REPRESENTATIONS OF TIME-DEPENDENCE IN QUANTUMMECHANICS189General properties of U(t, t0)1. The time evolution operator U(t, t0) is unitary, i.e.
U †U = 1, (12.8)sine
〈ψs(t) |ψs(t)〉 = 1, ∀t. (12.9)2. U(t, t1)U(t1, t0) = U(t, t0)3. U(t, t) = 14. U †(t1, t2) = U(t2, t1)12.1.2 Heisenberg pitureAll the time dependene an be ast from |ψ(t)〉 into a time dependene of Ω ,while keeping all physial preditions of the theory, i.e. 〈Ω〉(t), unhanged.

〈Ω〉(t) = 〈ψs(t)|Ωs |ψs(t)〉 (12.10)
= 〈ψs(t0)|U †

s (t, t0)ΩsUs(t, t0) |ψs(t0)〉 (12.11)
= 〈ψH(t)|ΩH(t) |ψH(t)〉 (12.12)While Equation (12.10) represents the Shrödinger piture, equation (12.12) rep-resents the Heisenberg piture, in whih we have the t-independent state

|ψH〉 = |ψs(t0)〉, (12.13)and
ΩH(t) = U †

s (t, t0)ΩsUs(t, t0), (12.14)whih is also valid for Ω = H .Equations of motion for ΩH(t) and Us(t, t0)

i~ d
dt
|ψs(t)〉 = i~ d

dt
Us(t, t0) |ψs(t0)〉 (12.15)

= HUs(t, t0) |ψs(t0)〉, (12.16)



190 CHAPTER 12. TIME-DEPENDENT PERTURBATION THEORYwhih must be ful�lled for all initial onditions |ψs(t0)〉. Hene, we get
i~ d

dt
Us(t, t0) = HUs(t, t0), (12.17)and by equation (12.14) moreover

i~ d
dt

ΩH(t) = i~
[
dU†

s

dt
ΩsUs + U †

sΩs
dUs

dt
+ U †

s
∂Ωs

∂t
Us

]
, (12.18)with

−i~dU†
s

dt
= U †

sH. (12.19)Thus we obtain
i~ d

dt
ΩH(t) = −U †

sHUsU
†
sΩsUs + U †

sΩsUsU
†
sHUs + i~ ∂

∂t
ΩH(t), (12.20)and �nally

i~ d
dt

ΩH(t) = [ΩH , HH ] + i~ ∂
∂t

ΩH(t) . (12.21)This equation is in omplete analogy to the lassial Hamiltonian equation ofmotion, i.e.
d
dt

Ω = {Ω, H }+ ∂
∂t

Ω (12.22)
{Ω, H } = ∂Ω

∂x
∂H
∂p
− ∂H

∂x
∂Ω
∂p

(12.23)Correspondene priniple in Heisenberg piture1
{Ω, H } → 1

i~
[ Ω, H ] (12.24)Remark:Historially, the Heisenberg piture was �rst disovered by Heisenberg, when hefound from his analysis of atomi spetra that in quantum mehanial physialtransition amplitudes have matrix multipliation rules,

anm =
∑

k

ankakm, (12.25)1Compare also with the Ehrenfest theorem!



12.1. REPRESENTATIONS OF TIME-DEPENDENCE IN QUANTUMMECHANICS191and, hene, must be desribed as operators. He took the orrespondene priniple(12.24) as the natural generalization of lassial mehanis.Shrödinger introdued his piture shortly after from a generalized desription ofinterferene phenomena. The equivalene was at �rst not lear, but was shownby Dira.Equal-time ommutators in Heisenberg piture
[ xH(t), pH(t) ] = U †

s (t, t0)× Us(t, t0)U †
s (t, t0) pUs(t, t0)

−U †
s (t, t0) pUs(t, t0)U

†
s (t, t0)× Us(t, t0) (12.26)

= U †
s (t, t0)× Us(t, t0)Us(t0, t) pUs(t, t0)
−U †

s (t, t0) pUs(t, t0)Us(t0, t)× Us(t, t0) (12.27)
= U †

s (t, t0)× Us(t, t) pUs(t, t0)
−U †

s (t, t0) pUs(t, t)× Us(t, t0) (12.28)
= U †

s (t, t0) [ x, p ]Us(t, t0) (12.29)
= i~ 1 (12.30)The ommutators for non-equal times are in general more ompliated, in par-tiular 6= 0, sine

U(t, t0)U
†(t

′

, t0) 6= 1. (12.31)12.1.3 Interation or Dira pitureFor the development of perturbation theory it is useful to separate the �trivial�
t-dependene of |ψs(t)〉 due to the stationary time evolution of exp

(
− i

~
H0t

) fromthe nontrivial t-dependene due to V (t), e.g. for eigenstates of H0, where the
t-development aording to H0 is absorbed in an exponential funtion, i.e.

|n(t)〉 = e−
i
~
Et(t−t0) |n(t0)〉. (12.32)Therefore, we de�ne the interation or Dira piture as follows.

|ψI(t)〉 = e
i
~
H0(t−t0) |ψs(t)〉 = U0†

s (t, t0) |ψs(t)〉 (12.33)
= U0†

s (t, t0)Us(t, t0) |ψH〉 (12.34)



192 CHAPTER 12. TIME-DEPENDENT PERTURBATION THEORYEquations of motion for |ψI(t)〉 and ΩI(t)By
−i~ d

dt
U0†
s = U0†

s H
0
s (12.35)and

i~ ∂
∂t
Us = [H0

s + Vs(t) ]Us (12.36)we get
i~ d

dt
|ψI(t)〉

= −U0†
s H

0
sUs |ψH〉+ U0†

s (H0
s + Vs)Us |ψH〉 (12.37)

= U0†
s VsUs |ψH〉 = U0†

s Vs |ψs〉 (12.38)
= U0†

s VsU
0
s |ψI(t)〉 = VI(t)|ψI(t)〉 . (12.39)We then have

〈ψs(t)|Ω|ψs(t)〉 = 〈ψI(t)|U0†
s ΩsU

0
s |ψI(t)〉 (12.40)

= 〈ψI(t)|ΩI(t)|ψI(t)〉 (12.41)with
ΩI(t) = U0†

s ΩsU
0
s

U0
s = e−

i
~
H0(t−t0)

i~ ∂
∂t
|ψI(t)〉 = VI(t) |ψI(t)〉

, (12.42)
whih desribes the time evolution in the interation piture.In the interation piture, the state evolves aording to a Shrödinger equationonly with the perturbation VI(t). Any operator evolves like a Heisenberg opera-tor, but with the unperturbed HamiltonianH0. The advantage of the interationpiture is that the time evolution of the operators is known.



12.2. PERTURBATION THEORY IN GENERAL 19312.2 Perturbation theory in general
|ψI(t)〉 = UI(t, t0) |ψI(t0)〉, (12.43)where UI is the time evolution operator in the interation piture. With
Us = U0

sUI (12.44)the equation of motion for UI reads
i~∂UI

∂t
= VIUI . (12.45)Sine VI is t-dependent, we here have no simple exponential solution.The formal integration with initial ondition yields

UI(t, t0) = 1− i
~

∫ t
t0
dt

′

VI(t
′

)UI(t
′

, t0) , (12.46)whih is known as the Lippmann-Shwinger integral equation. The Lippmann-Shwinger equation an be solved by iteration. This generates the desired powerseries in VI(t) .
UI(t, t0) = 1− i

~

∫ t
t0
dt

′

VI(t
′

) + (− i
~
)2
∫ t
t0
dt

′ ∫ t′
t0
dt

′′

VI(t
′

)VI(t
′′

)

+(− i
~
)3
∫ t
t0
dt

′ ∫ t′
t0
dt

′′ ∫ t′′
t0
dt

′′′

VI(t
′

) · VI(t′′)VI(t′′′)
+ . . . (12.47)

Us(t, t0) = U0
s (t, t0)UI(t, t0) (12.48)It would be onvenient to have the upper integral bounds independent of theintegration variables.

T̂
∫ t
t0
dt

′ ∫ t
t0
dt

′′

VI(t
′

)VI(t
′′

) =
∫ t
t0
dt

′ ∫ t′
t0
dt

′′

VI(t
′

)VI(t
′′

)

+
∫ t
t0
dt

′ ∫ t
t′
dt

′′

VI(t
′′

)VI(t
′

) (12.49)
=

∫ t
t0
dt

′ ∫ t′
t0
dt

′′

VI(t
′

)VI(t
′′

)

+
∫ t
t0
dt

′′ ∫ t
t′′
dt

′

VI(t
′

)VI(t
′′

) (12.50)These integrals share the same integration area, sine the integrands in both partsof the integral are equal (see �gure 12.1).
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∫ t
t0
dt

′ ∫ t′
t0
dt

′′

VI(t
′

)VI(t
′′

) = 1
2
T̂
∫ t
t0
dt

′ ∫ t
t0
dt

′′

VI(t
′

)VI(t
′′

), (12.51)with
T̂{ VI(t1)VI(t2) } =

{
VI(t1) VI(t2) , t1 > t2

VI(t2) VI(t1) , t1 < t2
. (12.52)

t

t′′

t′ > t′′

t′

t′ > t′′
t′′

∫ -area∫ -area
Figure 12.1: Integration area for perturbation VIConsequently the time evolution operator reads

UI(t, t0) = T̂ e
− i

~

∫ t
t0
dt

′

VI(t
′

) (12.53)Sine UI(t, t0) and |ψI(t)〉 have the same equation of motion in terms of t,
i~ ∂

∂t
|ψI(t)〉 = VI(t) |ψI(t)〉 = U0†VsU

0 |ψI(t)〉, (12.54)we an write the same perturbation expansion for |ψI(t)〉 as for UI(t, t0).
|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t
t0
dt

′

VI(t
′

) |ψ(t
′

)〉 , (12.55)whih is the Lippmann-Shwinger Equation for |ψ(t)〉. By iteration we get
|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t
t0
dt

′

VI(t
′

) |ψI(t0)〉

+(− i
~
)2
∫ t
t0
dt

′ ∫ t′
t0
dt

′′

VI(t
′

)VI(t
′′

)|ψI(t0)〉+ ... (12.56)
= T̂ e

− i
~

R t
t0
dt

′
VI (t

′
)|ψI(t0)〉 (12.57)

= UI(t, t0)|ψI(t0)〉. (12.58)



12.2. PERTURBATION THEORY IN GENERAL 195The state in the Shrödinger piture is, hene, obtained as
|ψs(t)〉 = U0

s (t, t0)UI(t, t0) |ψI(t0)〉 (12.59)
= e−

i
~
H0(t−t0) T̂ e

− i
~

R t
t0
dt

′
VI(t

′
) |ψI(t0)〉 (12.60)where

|ψI(t0)〉 = |ψs(t0)〉. (12.61)This equation allows to alulate the time evolution of any state under the ationof V (t). In partiular, an (initial) eigenstate |i0〉 of H0 will, after time t, havedeveloped into a superposition of �nal eigenstates |f 0〉.
|ψs(t)〉 =

∑

m

|f 0〉〈f 0 |ψs(t)〉, |ψ(t0)〉 = |i0(t0)〉, (12.62)where 〈f 0(t) |ψs(t)〉 is on the one hand the amplitude for �nding the system ineigenstate |f 0(t)〉 of H0, after V (t) has been ating for the time t on the initialstate |i0〉 and on the other hand the transition amplitude for |i0〉 −→ |f 0〉 afterthe time t under the ation of V (t).
〈f 0 |ψs(t)〉 an be alulated using perturbation theory. In �rst order pertur-bation theory, set t0 = 0, i.e.

|ψs(0)〉 = |i0(0)〉, (12.63)and get by this
|ψs(t)〉 = e−

i
~
H0t{ |i0(0)〉 − i

~

∫ t
0
dt

′

VI(t
′

)|i0(0)〉 } (12.64)
〈f 0(t) |ψs(t)〉 = 〈f 0(t)|e− i

~
H0t|i0(0)〉

− i
~

∫ t
0
dt

′ 〈f 0(t)|e− i
~
H0tVI(t

′

)|i0(0)〉 (12.65)
= 〈f 0(0)|i0(0)〉 − i

~

∫ t
0
dt

′ 〈f 0(t)|VI(t
′

) |i0(0)〉, (12.66)i.e.
〈f 0(t) |ψs(t)〉 = δfi − i

~

∫ t
0
dt

′ 〈f 0(0)| VI(t
′

) |i0(0)〉 =: dfi(t) . (12.67)



196 CHAPTER 12. TIME-DEPENDENT PERTURBATION THEORYThis is the �rst order transition rate |i0〉 → |f 0〉 after time t. With
VI(t

′

) = e
i
~
H0t

′

Vs(t
′

) e−
i
~
H0t

′ (12.68)equation (12.67) beomes
dfi(t) = δfi − i

~

∫ t
0
dt

′ 〈f 0(0)| Vs(t
′

) |i0(0)〉 e− i
~
(E0

i −E0
f ) t

′
. (12.69)12.3 Periodi perturbation to �rst order pertur-bation theoryConsider a periodi perturbation

Vs(t) = V̂ cos(ωt), (12.70)whih is the real part of the potential V̂ e−iωt with ω −→ ±ω. Assume that thesystem omes into ontat with the perturbation at time t = 0.
dfi(t) = − i

~

∫ t
0
dt

′ 〈f 0(0)| V̂ |i0(0)〉 exp
(
i
~
(Ef −Ei − ~ω)t

′) (12.71)
= − i

~
〈f 0| V̂ |i0〉 exp(i(ωf−ωi−ω)t)−1

i(ωf−ωi−ω)
, (12.72)with

f 6= i and ωf,i =
E0

f,i

~
. (12.73)The probability for the transition |i0〉 → |f 0〉 reads

Pi→f(t) = |dfi|2 = 1
~2 |〈f 0| V̂ |i0〉|2

[
sin(1/2·(ωf−ωi−ω)t)

1/2·(ωf−ωi−ω)t

]2

t2, (12.74)see also �gure 12.2.Transition dynamis:The system �likes� to go to states with |x| . π,
|(ωf − ωi − ω) t

2
| . π (12.75)

E0
f − E0

i = ~ω + ∆ (12.76)
−2π~

t
6 ∆ 6 2π~

t
. (12.77)
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x = (ωf − ωi − ω) t

2

(
sin(x)

x

)2

0 π 2π

1

Figure 12.2: Illustration of the transition probabilityDisussion:The allowed energy interval ∆ around ~ω shrinks to 0 with inreasing time, be-ause for �nite time t, the perturbation is a pulse [ 0, t ], whose Fourier spetrumontains a ontinuum of frequenies in the interval [ω − 2π
t
, ω + 2π

t
].Energy onservation rule:

E0
f = E0

i + ~ω applies, when the width (unertainty) of the spetrum 2π/t isnegligible towards its enter frequeny ω , i.e. for 2π
t
≪ ω and many yles in thepulse

ωt≫ 2π (12.78)is valid. The transition amplitude for t →∞ reads
dfi(∞) = lim

t→∞
− i

~

∫ t
2

− t
2

dt
′〈f 0(0)| V̂ |i0(0)〉( ei(ωf−ωi−ω)t

′

+ ei(ωf−ωi+ω)t
′

)

= −2πi
~
〈f 0| V̂ |i0〉[ δ(ωf − ωi − ω) + δ(ωf − ωi + ω) ],and the transition probability

Pfi(∞) = 4π2

~2 |〈f 0| V̂ |i0〉|2 [ δ(ωf − ωi − ω) ]2 + [ δ(ωf − ωi + ω) ]2 (12.79)
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δ(ωf − ωi − ω) δ(ωf − ωi − ω)

= δ(∆ωfi − ω) δ(∆ωfi − ω) (12.80)
= δ(∆ωfi − ω)

1

2π
lim
t→∞

∫ t
2

− t
2

ei(∆ωfi−ω) dt
′ (12.81)

= δ(∆ωfi − ω) lim
t→∞

t

2π
. (12.82)The transition rate for long times,

δ(ωf − ωi − ω) = ~δ(E0
f − E0

i − ~ω), (12.83)reads
Ri→f =

Pi→f

t
= 2π

~
|〈f 0|V̂ |i0〉|2δ(E0

f −E0
i ∓ ~ω) . (12.84)Equation (12.84) is alled Fermi's Golden Rule.Remarks:

• In realisti problems, the �nal state energy E0
f is always integrated over a�nite range dEf so that the transition beomes

Ri→f(Ef) dEf = 2π
~
|〈f 0| V̂ |i0〉|2N(E0

i + ~ω) dEf , (12.85)where the fator N(E0
i + ~ω) is the density of states in the �nal state.

• Fermi's Golden Rule is only valid for not too large times t, sine then higherorder ontributions of perturbation theory beome important. If the systemhas a disrete eigenspetrum, the time evolution is eventually periodi, e.g.neutrino osillations, 2d-Hilbert spae. Fermis' Golden Rule remains valid,as long as the oupation probability of the initial state is muh greaterthan the oupation probability of the �nal state. This is, in partiular,the ase, if the �nal state is depopulated into a 3rd state.Derivation of Fermis's Golden Rule:



12.4. SUDDEN PERTURBATION 199
• For t > 2π~

|Ef−Ei| a transition to the whole ensemble of �nal states is possible.In this ase, all states are in the entral peak of sin2
(
ω
2
t
)
/(ω/2). In otherwords, the energy width dE is so large, that the entral peak is within dE.Only then the approximation 2πtδ(ω) is valid.

• For t not being too large the distane between the energy of the �nal statesis small for a su�iently dense distribution, sine ω is a ontinuous variable.If δE denotes their distane, we, hene, get
t≪ 2π~

δE
. (12.86)

• Validity of �rst order perturbation theory: Rt≪ 1

2π~

∆E
< t≪

{
2π~

δE

R−1
(12.87)Charateristi funtion:

‖χ[−t,t] ‖2 =
∫
χ[−t,t] dx = 2t = ‖Fχ[−t,t] ‖2 (12.88)

Fχ = 1√
2π

∫ t
−t e

−iωx dx = 1√
2π

e−iωteiωt

−iω (12.89)
=

√
2
π

sinωt
ω

(12.90)
⇒
∫

( sinωt
ω

) dω = πt (12.91)12.4 Sudden perturbationA sudden perturbation is reprensented by an abrupt hange of the Hamiltonianover a small time interval ε. The hange of state aording to the Shrödingerequation has the following asymptoti behavior.
|ψs(+ ε

2
)〉 − |ψs(− ε

2
)〉 = |ψafter(t)〉 − |ψbefore(t)〉 (12.92)

= − i
~

∫ ε
2

− ε
2
dt H(t) |ψs(t)〉 (12.93)

→ 0, (12.94)for ε→ 0. Therefore, the state is not hanged by a �nite, sudden perturbation.
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V (t) = V̂ · θ(t)

t

V̂ 0Figure 12.3: Sudden perturbationThe approximation of a disontinuous hange is good, if the time sale of theperturbation hange ε, is short ompared to the harateristi time sale τ onwhih |ψs(t)〉 hanges, i.e.
|ψs( ε2)〉 − |ψs(− ε

2
)〉

∼= −
[
i
~

∫ ε
2

− ε
2
dtH(t)

]
· |ψ(0)〉 (12.95)

≈ −i ε · ωhar︸ ︷︷ ︸
≪1

|ψ(0)〉 (12.96)Example: β deay
���
���
���
���
���

���
���
���
���
���

v ≈ c e−
e−

Z −→ Z + 1Figure 12.4: Nulear hange at β deayHere, an abrupt hange of nulear harge, Z → Z + 1, during the time
ε =

a0

Zc
=

atom radiusveloity of e− (12.97)takes plae where a0 is the Bohr radius of the hydrogen atom,
a0 =

~2

me2
. (12.98)
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a = ~2

mZe2
. (12.99)The energy eigenvalue is given by

En =
ZRy

n2
(12.100)with the Rydberg onstant

1Ry =
me4Z2

2~2
=
Z2e2

2a0

. (12.101)Charateristi time for the 1s eletron:
τ ≈ ~

E0
≈ 2~a0

Z2e2
(12.102)

ε

τ
=

1

2
Z
e2

~c
=

1

2
Zα =

1

274
Z, (12.103)whih is a small number for light nulei.After the perturbation is swithed on, the system is not in an eigenstate of theperturbed Hamiltonian. It evolves aording to the perturbed, time independentHamiltonian, with the initial ondition that at t = 0 the system was in an eigen-state of the unperturbed Hamiltonian.Sudden perturbation:

dfi = − i
~
〈f 0| V̂ |i0〉 exp(i(ωf−ωi)t)−1

i(ωf−ωi)
(12.104)

⇒ Pfi = 1
~2 |Vfi|2 sin ∆ω

2
t

ω
2
t

(12.105)
⇒
t→∞

Pfi = t
2π

4π2

~2 |Vfi|2 δ(ωf − ωi) (12.106)
=

t

2π

4π2

~2
|Vfi|2 ~δ (Ef − Ei) �elasti� (12.107)

⇒ Rfi =
Pfi
t

(12.108)
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V (t) = eηtV , η > 0 (12.109)
⇒ Pfi = 1

~2

∣∣∣
∫ t
t0
dτ eητ e

i
~

(Ef−Ei)τ 〈f | V |i〉
∣∣∣
2 (12.110)

⇒
t0→−∞

Pfi =

∣∣∣∣∣
eηt e

i
~
(Ef−Ei)t

Ef −Ei − iη~

∣∣∣∣∣

2

|Vfi|2 (12.111)
= e2ηt

(Ef−Ei)2+(η~)2
|Vfi|2 (12.112)

⇒ ∂Pfi

∂t
= e2ηt 2η

(Ef−Ei)2+(η~)2
|Vfi|2 (12.113)

⇒
η→0

Rfi =
∂Pfi

∂t
= e2ηt 2π

~
δ(Ef −Ei) |Vfi|2 (12.114)12.5 Adiabati perturbationAdiabati theorem:If H(t) hanges on a time sale T muh slower than the intrinsi time sales ofthe system τ , espeially the inverse eigenenergies ~/E0

n, then the system makesmany yles exp
(
− i

~
EnT

) before H(t) hanges signi�antly, and we an de�nestationary eigenstates and eigenenergies at eah instant of time, |ψn(t)〉. Thetime dependent eigenstates of H(t) are the energy eigenstates of H(t) at eahinstant of time.

tH(T )

|ψ0(T )〉

H(0)

|ψn〉, En

|ψ0(0)〉Figure 12.5: Adiabati evolution of the eigenenergies, eigenstatesTherefore the system does not hange if it is in a state of the disrete spetrum.Example: Partile in a slowly expanding box
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• Time for one osillation of the partile reads

τ =
L

v
=
mL

p
=
mL2

~π
, (12.115)sine p = ~π/L and v = p/m = ~/mL. It is adiabati if

|∆L| per yle τ
L

∼=
|∂L
∂t
|mL2

~L
=
mL

π~
|∂L
∂t
| ≪ 1 (12.116)or

vwalls
vparticle

≪ 1. (12.117)
• Eigenenergies

E0
n =

p2
n

2m
=

(n~π)2

2mL2
(12.118)

E0
f − E0

i ≈
(~π)2

mL2
(12.119)

τ =
~

E0
f −E0

i

≈ mL2

~π2
(12.120)
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Chapter 13
Many-Partile Systems - Fermions,Bosons
13.1 Many-partile wave funtionsAssume a system of N idential partiles whih do not interat with eah other.The full Hamiltonian then reads

H = H1(~x1, ~p1) +H1(~x2, ~p2) + ...+H1(~xN , ~pN), (13.1)where the single-partile Hamiltonian in x-representation is given by
H1(~x, ~p) = ~p2

2m
+ V (~x) (13.2)with ~x1, ~p1 being the oordinate and the momentum of partile 1 and so on.Then the state an be written as a diret produt of the single-partile states.Let partile i, i = 1, ..., N , be in eigenstate |ni〉 of the Hamiltonian H1. Thentry to onstrut the many-partile state.

|ψ(x1, ..., xN )〉 = |ψn1(~x1)〉 |ψn2(~x2)〉 ... |ψnN
(~xN)〉 (13.3)Quantum Mehanis:If all the N partiles are indistinguishable, then the state an only be hangedby a phase fator when two partiles are interhanged, i.e. ~xi ↔ ~xj . Exhangingthese partile twie must lead bak to the initial state. Therefore the phase fa-tor aquired by partile exhange must be ±1 (representation of the permutation205



206 CHAPTER 13. MANY-PARTICLE SYSTEMS - FERMIONS, BOSONSgroup). Hene, the many-partile wave funtion is either totally symmetri ortotally antisymmetri.Symmetri wave funtions: Bosons
|ψ(x1, . . . , xN)〉B

=
√

N1!...NN !
N !

∑
p{~x1,...,~xN} |ψn1(~x1)〉 . . . |ψnN

(~xN)〉 (13.4)Antisymmetri wave funtions: Fermions
|ψ(x1, . . . , xN)〉F

= 1√
N !

∑
p{~x1,...,~xN}(−1)p|ψn1(~x1)〉 . . . |ψnN

(~xN )〉 (13.5)
Ni is the number of partiles in the single-partile state i and the exponent pis the permutation fator whih an assume the values ±1 aording to an even(+1) or an odd (-1) permutation.Example: 2 partilesBosons:

|ψ(x1, x2)〉B =
1√
2
[ |ψ1(~x1)〉|ψ2(~x2)〉+ |ψ1(~x2)〉|ψ2(~x1)〉 ] (13.6)Fermions:

|ψ(x1, x2)〉 =
1√
2
[ |ψ1(~x1)〉|ψ2(~x2)〉 − |ψ1(~x2)〉|ψ2(~x1)〉 ] (13.7)

=

∣∣∣∣∣
|ψ1(~x1)〉 |ψ1(~x2)〉
|ψ2(~x1)〉 |ψ2(~x2)〉

∣∣∣∣∣ (13.8)For N partiles we get the so-alled Slater determinant,
|ψ(x1, ..., xN )〉 =

∣∣∣∣∣∣∣∣∣∣

|ψn1(~x1)〉 · · · |ψn1(~xN)〉
|ψn2(~x1)〉 · · · |ψn2(~xN)〉... ...
|ψnN

(~x1)〉 · · · |ψnN
(~xN )〉

∣∣∣∣∣∣∣∣∣∣

. (13.9)



13.2. HELIUM ATOM 207Spin-Statistis theorem:Systems onsisting of idential partiles with integer spin have totally symmet-ri wave funtions (Bosons). Systems onsisting of idential partiles with half-integer spin have totally antisymmetri wave funtions (Fermions).This theorem follows from relativisti quantum �eld theory and is only mentionedhere without a proof and any motivation.Slater determinant:If two partiles oupy the same state, ni = nj for two partiles, then the stateis 0. Therefore no double oupany of states is possible.13.2 Helium atomThe Helium atom onsists of two eletrons whih have to obey the Pauli priniple.Spin eigenfuntions:
χ00 = 1√

2
(↑↓ − ↓↑) s = 0 antisymmetri (13.10)

χ11 = ↑↑ (13.11)
χ10 = 1√

2
(↑↓ + ↓↑) s = 1 symmetri (13.12)

χ1−1 = ↓↓ (13.13)Spae eigenfuntions:From the full Hamiltonian,
H =

1

2m

(
~p(1)2 + ~p(2)2 − Ze2

r(1)
− Ze2

r(2)
+

e2

|r(1) − r(2)|

)
, (13.14)we an see that the problem separates so that we hoose as an ansatz for theeigenfuntions

φ = φn1l1m1(~r
(1)) φn2l2m2(~r

(2)). (13.15)For the ground-state we get the energy
E0 = −2

Z2e2

2a0
(13.16)



208 CHAPTER 13. MANY-PARTICLE SYSTEMS - FERMIONS, BOSONSand the symmetri state φ100 φ100 (L = 0). For the �rst exited state we get
E1 =

(
−1− 1

4

)
Z2e2

2a0
(13.17)and the state φ100 φ2lm or φ2lm φ100 (L = l).We therefore have a well-de�ned symmetry in this problem,

φ± =
1√
2
(φ100 φ2lm ± φ2lm φ100), (13.18)where the ± indiates the behavior under exhange.Altogether we have the ground state

φ100 φ100 χ00, s = 0 (13.19)and the �rst exited states
ψpara = φ+

l χ00 or ψortho = φ−
l χ1ms . (13.20)The Ortho-Helium has no ground state and the wave funtion ψortho is metastable.It also has a �ne struture.

→ Are there two sorts of Helium?!Repulsion: Level spaing ∼ 0, 1eVHund's rulesThey take the repulsion into aount.(1.) S maximal:The spin funtion is symmetri and for strong repulsion the spin funtionis antisymmetri, in partiular = 0 for ~r(i) → ~r(j).(2.) L maximal:The eletrons are further away from the nuleus and therefore further awayfrom eah other. Hene, the repulsion is smaller. This e�et is smaller thanthe �rst rule.



13.3. HUND'S RULES: ANTISYMMETRY OF THE TOTALWAVE FUNCTION209(3.) If the shell is less than half-�lled, then J = |L− S| and if the shell is morethan half-�lled J = L+ S, beause of LS-oupling. The 2He ground statehas S = 0 and not S = 1.Relativisti orretions:
− p4

8m3e2
→ −mc2(Zα)4

2m4

(
n
l+ 1

2

− 3
4

)
, (13.21)

Ze2

2m2c2r3
~L · ~S → me2(Zα)4

4n3l(l+ 1
2
)(l+1)

{
l

−l − 1

} (13.22)and = 0 for l = 0 (13.23)
~2Ze2

2m2c2
δ(~r) → mc2(Zα)4

2n4 δ2,0 (13.24)
⇒ L

′

= mc2(Zα)4

2n4

(
3
4
− n

j+ 1
2

) (13.25)13.3 Hund's rules: Antisymmetry of the total wavefuntion(1.) Total spin: S maximal
• Spin-wave funtion totally symmetri
→ Position wave funtion totally antisymmetri
→ ψ(~ri, ~rj) = 0 for ~ri = ~rj

→ Minimization of Coulomb energy of eletrons(2.) Total orbital angular momentum: L maximal
• Wave funtion most be strongly extended in spae
→ Maximal average distane between eletrons
→ Coulomb-energy due to e− − e− interation minimized(3.) Total angular momentum

J =

{
L+ S shell less than half �lled
L− S more (13.26)

VSB =
N∑

i=1

αi ~Li · ~Si (Russel-Saunders) (13.27)
αi ∼=

~2

2m2c2
Ze2

r3
> 0(without interation orretions) (13.28)



210 CHAPTER 13. MANY-PARTICLE SYSTEMS - FERMIONS, BOSONSFrom the �rst two rules we get
〈 ~Li〉 ∼ 〈~L〉, 〈~Si〉 ∼ 〈~S〉 (13.29)suh that
VSB = A · ~S · ~L =

1

2
A[J(J + 1)− L(L+ 1)− S(S + 1)]. (13.30)

• Shell less than half �lled: All spins ↑↑↑
Si =

S

N
(13.31)

VSB =

N∑

i=1

αi ~Li ·
S

N
∼= α

N
~L · ~S (13.32)

A =
α

N
> 0 (13.33)

⇒ J minimal: J = |L− S|

• Shell more than half �lled:Substrat VSB from �lled shell A < 0

13.4 Atoms with several eletrons - periodi sys-tem of elementsWith inreasing number of eletrons the orbitals of an atom Rnl(~r)Y
m
l (θ, ϕ) are�lled in the ground state aording to

• Minimize energy (lowest-lying orbitals)
• Pauli priniple (fermions)
• Hund's rules (minimizing energy, taking orretions by Coulomb-interationand spin-orbit oupling into aount)



13.4. ATOMSWITH SEVERAL ELECTRONS - PERIODIC SYSTEM OF ELEMENTS211Shell struture:
0 oupling Jel · SN

hyper�nespin-orbitouplingl-degenaray liftede-e-interation,

l = 0 (s)n = 1

breaking of
mj degeneraysplitting
≪ 10−3eV

degeneray
(2J + 1)

n = 3

∼ 1eVn = 2

l = 0, 1 (s,p)l = 0, 1, 2 (s,p,d) degeneray
(2l + 1)(2s+ 1)

breaking ofl,s degeneray∼ 0, 1eVsubshells 10−2 − 10−3eVprinipalshell
single-partilewave funtion

Figure 13.1: Split up of energy statesPeriodi system of elements1Eletroni on�gurations of elements:
• 8 elements per main period:Filling of (nearby degenerate s, p orbitals)
• Noble gases:Filled main shells. Stable, sine large energy gap to next main shell.
• Transition metal elements:Filling of d-shell (l = 2, for n ≥ 3)

2(2l + 1) = 10 degeneray
• Lauthanides, atinides:Filling of 4f and 5f shells (l = 3, for n ≥ 4)

2(2l + 1) = 14 degeneray1see e.g. http://www.webelements.om or http://www.hemistryoah.om/periodi_tables.htm



212 CHAPTER 13. MANY-PARTICLE SYSTEMS - FERMIONS, BOSONS1 s11 s21 s21 s21 s21 s21 s22 s12 s12 s12 s22 s22 s22 s2 p1 ↑↓
↑↓
↑↓
↑↓
↑↓

↑↓
↑↓
↑↓
↑↓
↑↓

↑

↑

↑
↑ ↑
↑ ↑ ↑
↑ ↑↑↓

1 s1l oupation#of orbitaln

H:He:Li:Be:B:C:N:O:F:Ne:
2 s1

p6p5p4p3p3
p2

1
s s

2
p

Figure 13.2: Eletroni on�gurations of elements13.5 The Fermi seaConsider eletrons in a box of length L and volume L3. The possible ~k-statesread
~k =

2π

L
(nxêx + ny êy + nz êz), ni = 0,±1,±2. (13.34)The states are �lled aording to the Pauli priniple. The k-spae volume for twoeletrons (spin ↑, ↓ ) is (2π

L
)3.

.

.

.

.

. . .

. . .

. . .

. . .

ky

kF

kz

(
2π
L

)3

Figure 13.3: Illustration of the Fermi sea



13.5. THE FERMI SEA 213The Fermi momentum and the Fermi energy are given by
PF = ~kF , EF =

p2
F

2m
. (13.35)A sharp edge separates oupied from unoupied states.
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Figure 13.4: The periodi system of elements (Soure:http://www.bartleby.om/61/harts/A4elemen.html)



Chapter 14
Eletrons in Eletromagneti Fields
14.1 Atoms interating with eletromagneti ra-diation; lassial treatment of the e-m �eldIn an atom the eigenstates are stationary (time-dependene ∼ exp

(
− i

~
Ent
)).This remains true even for time-independent perturbations, sine these wouldonly modify the stationary eigenstates.Thus, in order to have transitions between atomi states (exitations, deay) atime-dependent perturbation is neessary.Consider a time-dependent external eletromagneti �eld with radiative transi-tions like

~A(~r, t) = ~A0 cos(~k~r − ωt), (14.1)whih represents a plane wave. From
H =

1

2m

(
~p− (−e)

c
~A

)2

, ~∇ ~A = 0 (14.2)we have the perturbation linear in ~A (also see setion 9.2).
V (~r, t) =

e

mc
~A · ~p (14.3)

=
e

mc
cos(~k~r − ωt) ~A0 · ~p (14.4)

=
e

2mc
(ei(

~k~r−ωt) + e−i(
~k~r−ωt)) ~A0 · ~p (14.5)

= V +e−iωt + V −eiωt (14.6)215



216 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDSThe transition rate from the initial eigenstate |i0〉 to the �nal eigenstate |f 0〉 ofthe unperturbed Hamiltonian follows from Fermi's Golden rule,
Ri→f =

2π

~
{ |〈f 0 |V +| i0〉|2 δ(E0

f −E0
i − ~ω)

+|〈f 0 |V −| i0〉|2 δ(E0
f − E0

i + ~ω) }. (14.7)14.1.1 Photoeletri e�etThe photoeletri e�et desribes the ionization of an atom by eletromagnetiradiation. The initial state |i0〉 is a bound eigenstate of the atom, e.g. the groundstate. The �nal state |f 0〉 ≈ |~pf〉 is an approximately free state (momentum ~pf
1).The approximation of a free �nal state |~pf〉 is good if the �higher order terms�give a small ontribution to |〈f 0 |V ±| i0〉|2 ompared to |~pf〉.This is the ase if- E0

f ≫ E0
i ,- the initial state is a s-wave (e.g. the H ground state).Sine for absorption E0

f − E0
i > 0 yields, only the �rst term in Ri→f ontributesand we, hene, have the perturbation

V (~r, t) =
e

2mc
ei
~k~r ~A0 · ~p e−iωt (14.8)

≡ V + · e−iωt. (14.9)The transition matrix element in position basis for the H ground state reads
〈f 0 |V | i0〉 =

e

2mc
N

∫
d3r e

i
~
~pf~r ei

~k~r ~A0 (−i~~∇) e
− r

a0 , (14.10)where the fator N onsists of the normalization of a plane wave and of the Hground state, i.e.
N =

1

(2π~)
3
2

(
1

πa3
0

) 1
2

. (14.11)1|f0〉 = |~pf 〉+ �higher order terms in atomi potential�



14.1. ATOMS INTERACTINGWITH ELECTROMAGNETIC RADIATION217Eletri dipole approximation: Treating the fator ei~k~rThe fator ei~k~r, originating from the wave vetor ~k of the inident eletromagnetiwave, an be seen as adding the momentum ~k to the atom in the state
e−

i
~
~pf~r ei

~k~r = e−
i
~

(~pf−~k~)~r. (14.12)The multipole expansion in general is just the expansion of the exponential fun-tion, i.e.
ei
~k~r = 1 +O(~k · ~r). (14.13)Now we estimate (~k · ~r) for relevant magnitudes of ~k an ~r in atomi situations.

• |~r| . a0

• With ω = c · |~k| ≡ ck and
E0
f − E0

i = ~ω, E0
f − E0

i ≈ 1Ry =
e2

a0
(14.14)we approximately get

k =
~ω

~c
∼= e2

~ca0

. (14.15)
• By that we �nally obtain

kr ≈ e2

~c
= α =

1

137
≪ 1, (14.16)where α is again the �ne struture onstant.The approximation

ei
~k~r ≈ 1 (14.17)is alled eletri dipole approximation whih is very good for atomi transitions.Physial meaning:The wave length of an eletromagneti wave, with an amount of energy whih is



218 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDSrelevant for atomi transitions, is muh greater than the atomi radius. Thereforethe eletron in the atom sees a position-independent external �eld. If we assumea wave length of λ ≈ 1000nm, one typially gets rAtom ≈ 1 Å = 10−1 nm.In the eletri dipole approximation the ~r-dependene of V is negleted, i.e.
V (t) =

e

2mc
~A0 · ~p e−iωt (14.18)

H0 =
p2

2m
− e2

r
. (14.19)This perturbation is equivalent to the perturbation aused by the eletri dipolemomentum of the eletron, ~d = −e~r, oupling to the external eletri �eld ~E(t) =

−1
c
∂ ~A
∂t
.
V (t) = −1

2
~d · ~E(ω) e−iωt (14.20)with

~E(ω) = −iω
c
~A0, (14.21)where the prefator 1/2 in equation (14.20) omes from geometrial onsidera-tions.Proof :By plugging in the ommutator relation

[~r,H0 ] =
i~

m
~p (14.22)in the matrix element for any atomi transition, we get

〈f 0 |~p| i0〉 =
m

i~
〈f 0 |(~rH0 −H0~r)| i0〉 (14.23)

=
m

i~
(E0

i −E0
f )︸ ︷︷ ︸

−hω̄

〈f 0 |~r| i0〉 (14.24)
= imω〈f 0 |~r| i0〉 (14.25)and therefore

〈f 0 | e
2mc

~A0 · ~p| i0〉 = 〈f 0 |(−1
2
~d · ~E(ω))| i0〉. (14.26)



14.1. ATOMS INTERACTINGWITH ELECTROMAGNETIC RADIATION219The matrix element for photo-ionization reads
〈~pf |V +| i0〉 =

e

2mc

1

(2π~)
3
2

(
1

πa3
0

) 1
2
∫
d3r e

i
~
~pf~r ~A0 (−i~~∇) e

− r
a0 (14.27)The integral an be evaluated by partial integration. We get the golden ruleexpression

Ri→f =
2π

~

( e

2mc

)2 1

8π3~3

1

πa3
0

64π2a6
0

[ 1 + (
pfa0

~
)2 ]4

×| ~A · ~pf |2 δ(E0
f −E0

i − ~ω). (14.28)
• Angular dependene of the photo-emission

Ri→f ∼ | ~A0 · ~pf |2 ∼ cos2 (∢( ~A; ~pf)), (14.29)whih is typial for dipole harateristis. The emission, as shown in �gure14.1, ours predominantly into the diretion of the polarization of the light(as expeted lassially)
}

~k

~pF

dΩ solid angle
~A0, ~E

Figure 14.1: Photo-emission



220 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDS
• Total photoemission rateThe total photoemission rate an be alulated by integrating over all mo-menta ~pf . By

E0
f =

p2
f

2m
, ∂E0

f =
pf
m

∂pf (14.30)and
δ(

p2f
2m
− E0

i − ~ω) = m
pf

δ(pf −
√

2m(E0
i + ~ω)) (14.31)one gets

Ri→∂Ωf
=

4a3
0e

2

mπ~4c2pf [ 1 + (
pfa0

~
)2 ]4
| ~A0 · ~pf |2 ∂Ω (14.32)with

pf =
√

2m(E0
i + ~ω). (14.33)By integrating over all angles, i.e.

∫ 2π

0

∫ 1

−1

d cos θ cos2 θ =
4π

3
, (14.34)one �nally obtains

Ri→ion =
16a3

0e
2pf

3m~4c2[ 1 + (
pfa0

~
)2 ]4
| ~A0|2. (14.35)The photoemission rate is proportional to light intensity | ~A0|2 and ioniza-tion only ours if ~ω > −E0

i (threshold) yields.14.1.2 Absorption and stimulated emissionThe dipole approximation was de�ned by ei~k~r ≈ 1. The time-dependent potentialreads
V (t) =

e

2mc
~A0~p(e

−iωt + eiωt) (14.36)
≡ Ṽ (e−iωt + eiωt), (14.37)



14.1. ATOMS INTERACTINGWITH ELECTROMAGNETIC RADIATION221where the term proportional to exp (−iωt) represents absorption and the termproportional to exp (iωt) emission. As in setion 14.1.1 we obtain for intra-atomitransitions
Ri→f =

2π

~
|〈f 0|Ṽ |i0〉|2δ(E0

f − E0
i ± ~ω) (14.38)

〈f 0|Ṽ |i0〉 =
e

2mc

∫
d3rψ0

f
∗
(~r) ~A0 · (−i~~∇)ψ0

i (~r). (14.39)
• Absorption and stimulated emission rate are proportional to the light in-tensity |A0|2.
• Stimulated emission of light (E0

f < E0
i ) ours into the same wave vetor ~kand polarization Â0 as the inident wave has (oherent emission, see �eldquantization).

• Seletion rules in eletri dipole approximation
∆S = 0 (Orthonormality of Y m

l · ~∇Yl) (14.40)
∆l = ±1 (14.41)

∆ml = ±1, (14.42)
sine |f 0〉 and |i0〉 must have opposite parity. These rules are in aordanewith the fat that a vetor �eld ~A has spin 1!



222 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDSHow an spontaneous emission our?
~ω

~ω

E

Figure 14.2: Photon absorption and emission
14.2 Field quantization and spontaneous emissionThe lassial treatment of the eletromagneti �eld (setion 14.1) predits thata transition an only our if the amplitude of the time-dependent �eld ~A(t) is�nite. In ontrast, it is observed experimentally that an exited eletron statedeays �spontaneously�, even if there is no real external �eld present, therebyemitting a photon.This spontaneous deay is due to the zero-point (quantum) �utuations of theeletromagneti �eld, analogous to the zero-point motion of the harmoni osil-lator.This means that even in the ground state of the eletro-magneti �eld there is a�nite expetation value of the �eld intensity ∼ 〈 ~A2(t)〉 , whih indues transitionof the eletroni system.In order to desribe this e�et, we map the dynamis of the eletromagneti �eldonto a harmoni osillator problem and thereby identify its quantized eigenstates( = �eld quantization).Sine we had treated the harmoni osillator in the Hamiltonian formalism, wewill also seek a Hamiltonian desription of the eletromagneti �eld dynamishere. This is not Lorentz invariant, sine the Hamiltonian desription treats timeand spae oordinates in an asymmetri way. For our present purpose, this is,however, su�ient. A more thorough treatment will be done in Quantum Meh-nais II.



14.2. FIELD QUANTIZATION AND SPONTANEOUS EMISSION 223
14.2.1 A sketh of �eld quantizationIn the following we will write down the Lagrangian of the free eletromagneti�eld, derive the Hamiltonian and show that it is equivalent to an ensemble ofharmoni osillators with eigenfrequenies ω = c|~k| , where ~k is the wave vetorof the mode.The eletromagneti �eld tensor in the ontravariant form is de�ned by

F µν = ∂µAν − ∂νAµ (14.43)with the expliit form
F µν =




0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


 , (14.44)where Aµ represents the omponents of the eletromagneti four-potential, (Aµ) =

(φ, ~A)T , and the eletri and the magneti �eld are given by
~E = −1

c
∂ ~A
∂t
− ~∇φ, ~B = ~∇× ~A. (14.45)The Lagrangian of free �eld reads

L = − 1

16π

∫
d3r FµνF

µν (14.46)
=

1

8π

∫
d3r [ ~E2 − ~B2 ] (14.47)

=
1

8π

∫
d3r [ (−1

c
∂ ~A
∂t
−∇φ)2 − (~∇× ~A)2 ]. (14.48)

• The integration over t, i.e. the alulation of the ation funtional S =∫ t2
t1
dt L , and the variation of S with respet to ~A(~r, t) and φ(~r, t) would,together with the ondition δS = 0, yield the two (inhomogeneous) Maxwellequations.
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• We onsider free �elds, i.e. ρ = 0,~j = 0, in the radiation gauge φ(~r, t) = 0.Pulling the indies of the eletromagneti �eld tensor down, i.e. makingit ovariant, yields

Fµν = gµαF
αβgβν (14.49)

(Fµν) =




−1 0

1

1

0 1







0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0




×




−1 0

1

1

0 1


 (14.50)

=




0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 (14.51)

FµνF
µν = tr{ (F τ

µν)F
µν } = −2 [ ~E2 − ~B2 ]. (14.52)

• Transversality onditions on the free �elds
~∇ · ~E = 4πρ = 0 (14.53)
~∇ · ~B = 0 ⇒ ~∇ · ~A = 0 (14.54)Performing a Fourier transformation these onditions read
~k · ~E = 0 (14.55)
~k · ~A = 0. (14.56)Hamiltonian formulation:For onveniene, we absorb the prefator 1/8π in ~A, i.e.

~̃A(~r, t) =
1√
8π

~A(~r, t) (14.57)
L =

∫
d3r [ (−1

c
∂

e~A
∂t

)2

︸ ︷︷ ︸
T

− (~∇× ~̃A)2

︸ ︷︷ ︸
V

]. (14.58)
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~̃A(~r, t) = ~x is onsidered as the �elongation� analogous to the elongation ~x inpoint dynamis (at eah spae-time point (~r, t) ).

~A(~r1, t1)
~A(~r2, t2)

(~r1, t1) (~r2, t2)Figure 14.3: Sketh of the �eld ~A(~ri, ti)The anonial momentum assoiated with ~̃A reads
~̃Π(~r, t) =

∂L

∂ ∂
e~A
∂t

=
2

c2
∂ ~̃A

∂t
. (14.59)Notie the asymmetri treatment of ~r, t.The Hamilton funtion is given by

H = T + V =

∫
d3r [

c2

4
~̃Π

2

+ (~∇× ~̃A)2 ] (14.60)with
(~∇× ~̃A) · (~∇× ~̃A) = ~̃A · (~∇(~∇ · ~̃A)− ~∇2 ~̃A) (14.61)

= − ~̃A · (~∇2 · ~̃A). (14.62)Fourier transforming equation (14.60) yields
~̃A(~r, t) =

∫
d3k

(2π)3
ei
~k~r ~̃A(~k, t) et., (14.63)so that one �nally �nds

H =

∫
d3k [ c

2

4
~̃Π2(~k, t) + ~k2 · ~̃A2(~k, t) ]. (14.64)The term in brakets has the form of a (deoupled) harmoni osillator in termsof the oordinates ~x = ~̃A and the momentum ~p = ~̃Π at eah eigenmode ~k (Hamil-tonian density). Beause of this analogy one writes

H =

∫
d3k [ 1

2m
~̃Π2(~k, t) + 1

2
mω2 ~̃A2(~k, t) ] (14.65)



226 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDSwith
m = 2

c2

1
2
mω2 = ~k2

}
ω2 = (ck)2, (14.66)whih is the dispersion of eletromagneti waves.Hene, in analogy to the harmoni osillator (see hapter 4) we an write theelongation ~̃A and the momentum ~̃Π for eah ~k in terms of raising/lowering oper-ators of the exitation,

~̃A(~k, t) =

√
~

2mω
(a†λ + aλ) êλ(~k) (14.67)

=

√
~c

4k
(a†λ(

~k, t) + aλ(~k, t)) êλ(~k) (14.68)
~̃Π(~k, t) = i

√
m~ω

2
(a†λ − aλ) êλ(~k) (14.69)

= i

√
~k

c
(a†λ(

~k, t)− aλ(~k, t)) êλ(~k), (14.70)where êλ(~k)(λ = 1, 2) is the transverse polarization vetor whih is perpendiularto ~k and, in addition, a unit vetor. λ is alled the transverse polarization. Interms of raising/lowering operators one gets
H =

∑

λ

∫
d3k ~ω (a†~k,λa~k,λ + 1

2
) (14.71)with ω = ck and

{ aλ(~k, t), a†λ′ (~k
′

, t
′

) } = δ~k~k′δtt′ δλλ′ (14.72)
{ aλ(~k, t), aλ′ (~k

′

, t
′

) } = 0. (14.73)
a and a† are the so-alled ��eld operators� in ~k-spae. By

a(~r, t) =

∫
d3k√
(2π)3

ei
~k~r a(~k, t) (14.74)

a†(~r, t) =

∫
d3k√
(2π)3

e−i
~k~r a†(~k, t) (14.75)the �eld operators are given in position spae. They represent the �eld quantiza-tion of the eletromagneti �eld. a†λ(~k, t) reates and aλ(~k, t) destroys a photonwith wave vetor ~k and wave length λ.



14.2. FIELD QUANTIZATION AND SPONTANEOUS EMISSION 22714.2.2 Spontaneous stimulated emission and deayUsing the operator struture of ~A derived above, we an now alulate transitionmatrix elements in an algebrai way.
~A(~k, t) =

√
8π ~̃A(~k, t) =

√
2π~c

k
(a†λ(

~k, t) + aλ(~k, t)) êλ(~k) (14.76)
~A(~r, t) =

∫
d3k√
(2π)3

√
2π~c

k
(a†λ(

~k, t) e−i
~k~r + aλ(~k, t) e

i~k~r) êλ(~k) (14.77)The new thing ompared to the lassial treatment of the eletromagneti �eld isthat ~A is now an operator whih hanges the exitation state of the eletromag-neti system, i.e. the eletromagneti system must now be onsidered as a partof the quantum system, and not only as an external �eld.Transition rate for deay (E0
f < E0

i ):
Ri→f =

2π

~
|〈f 0 | e

mc
~A · ~p| i0〉|2δ(E0

f − E0
i + ~ω) (14.78)

|i0〉 = |i0el〉 ⊗ |i0ph〉 (14.79)
|f 0〉 = |f 0

el〉 ⊗ |f 0
ph〉, (14.80)where ~A ats on a photoni state and ~p ats on an eletri state.(a) Spontaneous deay:Here we onsider the ase that no �eld is applied and that the photonnumber vanishes, i.e. |i0ph〉 = |0ph〉.

〈f 0 |( ~A · ~p)| i0〉 = 〈f 0
el |~p| i0el〉 · 〈f 0

ph | ~A| i0ph〉

~A(ω) =
∑

λ

∫
d3k√
(2π)3

√
2π~c

k
(a†λ(

~k) + aλ(~k)) êλ(~k)Dipole approximation:Now we have no ~r-dependene, so that ei~k~r = 1.
〈f 0
ph | ~A(ω)| 0〉 =

∑

λ

∫
d3k√
(2π)3

√
2π~c

k
êλ(~k) 〈1k,λ |a†λ(~k, ω)| 0〉︸ ︷︷ ︸

=1

(14.81)



228 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDSTherefore, in the �nal state we have one photon with wave vetor ~k andwave length λ (emission). Furthermore the same rules as for the pointharmoni osillator are valid here.
• As in the lassial treatment we get

〈f 0
el |~p| i0el〉 =

∫
d3r ψ0∗

f (~r) (−i~~∇)ψ0
i (~r). (14.82)

• Sine the �utuating eletromagneti �eld has omponents for any ω, ω isintegrated over to get the total transition rate Ri→f .(b) Stimulated emission:Here we have an applied external �eld with (ω,~k, λ) so that the initial isgiven by |i0ph〉 = |nkλ〉.
〈f 0
ph | ~A(ω)| i0ph〉 (14.83)

=
∑

λ

∫
d3k√
(2π)3

√
2π~c

k
êλ(~k)〈(n+ 1)k,λ |a†λ(~k, ω)|n~kλ〉 (14.84)

=
∑

λ

∫
d3k√
(2π)3

√
2π~c

k
êλ(~k)

√
nkλ + 1 (14.85)The matrix element 〈f 0

el |~p| i0el〉 is the same as for spontaneous emission.Important onsequenes:In the presene of an external eletromagneti �eld with (ω, k, λ) the photonis emitted in the same state, i.e. with the same momentum ~k, polarizationand phase. Therefore stimulated emission is oherent → Laser.The stimulated emission rate Ri→f is enhaned ompared to the sponta-neous emission rate by a fator (nkλ+1), where n is the number of photonsin the initial state.14.3 Bohm-Aharonov-E�etFigure 14.4 shows the double-slit experiment with a magneti �eld.
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~r

~B

~SSoure
Figure 14.4: Double slit experiment with a magneti �eldThe magneti �eld ~B is on�ned to the region ⊗ perpendiular to the paper,

~B = ~∇× ~A. (14.86)The vetor potential ~A extends far outside, where ~B = 0.Gauge symmetry:In the presene of a vetor potential ~A(~r), the wave funtion ψ(r) aquires loallya phase,
ψ(~r) = e−i

q
~c

Λ(~r,t)ψA=0(~r, t) (14.87)
= e−iθ(~r,t)ψA=0(~r, t), (14.88)where q = −e is the harge. We an alulate the (global) phase whih a wavefuntion aquires after the partile has traveled through a region with ~A 6= 0along a path C1, C2.Path integral formulation:

ψ(~r, t) =

∫
d3r

′

U(~r, t;~r
′

, t0)ψ(~r
′

, t0) (14.89)
= U(~r, t; ~r′, t0) e

−iωt0 (14.90)with a point soure, i.e.
ψ(~r

′

, t0) = δ(~r
′ − ~r0) e−iωt0 . (14.91)The propagator is given by

U(~r, t;~s, t0) =
∑paths e− i

~
S ·N, (14.92)



230 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDSwhere N is a normalization fator. The ation funtional onsists of a partontaining a free partile and another part desribing a vetor �eld ~A, i.e.
S =

∫ t

t0

dt
′

(1
2
m~̇r2 − q

c
~̇r · ~A(~r)) +O( ~A2). (14.93)Gauge transformation:The wave funtion, the vetor potential and the ation funtional are transformedas follows. q

~c
Λ(~r, t) represents the phase fator.

ψ(~r) −→ e−i
q

~c
Λ(~r,t) (14.94)

~A(~r) −→ ~AΛ(~r) = ~A(~r)− ~∇Λ(~r, t) (14.95)
S −→ SΛ = S −

∫ t

t0

dt
′ q
c
(~̇r

′ · ~∇Λ (~r
′

, t
′

) + ∂Λ
∂t′

) (14.96)
= S −

∫ t

t0

dt
′ q
c
(∂Λ(~r

′
,t
′
)

∂t′
) (14.97)

= S − q
c
(Λ(~r, t)− Λ(~r0, t0)) (14.98)The phase fator for eah path C due to the magneti �eld ~B reads

e
iq
~c

R t
t0
c
dt

′
(~v· ~A)

= e
iq
~c

R ~r
~r0
c
d~r

′ · ~A
. (14.99)Here we have used that ~A is a onstant in time and we have substituted

d~r
′

=
d~r

d~t′
dt

′

. (14.100)Two di�erent paths C1, C2 only di�er by the phase
∆θ =

q

~c

∫ ~r

~r0
c1

dr
′ · ~A− q

~c

∫ ~r

~r0
c2

dr
′ · ~A (14.101)

=
q

~c

∮
dr

′ · ~A =
q

~c

∫
d~S · ~∇× ~A︸ ︷︷ ︸

~B

(14.102)
=

q

~c
φ =

φ

φ0
2π (14.103)The �ux φ is enlosed by c1, c2 and furthermore the fator φ0 = 2π~c

q
= hc

q
is theso-alled �ux quantum.

• A phase di�erene only ours if there is a real magneti �ux enlosed.
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• Hene, the phase di�erene is a global e�et:Two paths must enlose a �nite area in order to aquire a �nite phasedi�erene.Therefore a lassial partile traverses only a single path, i.e. is not sensitive to

~A. A quantum mehanial partile probes all paths and the path lasses 1 or 2have all the same phase.The total wave funtion on the sreen is given by
ψ(~r) =

∑Pathlass C1

e
iq
~c

R
c1
d~r

′ · ~A
ψ1(~r) +

∑Pathlass C2

e
iq
~c

R
c2
d~r

′ · ~A
ψ2(~r) (14.104)

= α [ψ1(~r) + e
i2π φ

φ0 ψ2(~r) ]. (14.105)This an be interpreted as a shift of the interferene pattern.
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Chapter 15
Non-perturbative ApproximationMethods
General remarks:
• Perturbation theory:- Small parameter (perturbation) neessary for expansion- Systematial: Well-de�ned presription of how to alulate e�ets of aperturbation up to a given order
• Nonperturbative methods:For problems where the perturbation is large or where the system is unsta-ble.- No small parameter neessary- Not systematial: Knowledge about the solution must be put into themethod15.1 Variational method (Ritz' variation prini-ple)The Ritz variation priniple is a method for �nding the approximate ground stateenergy and the ground state wave funtion.(1.) Choose a model wave funtion |ψ〉 = |ψ〉a1...an whih depends on one orseveral parameters. This de�nes a subset of Hilbert spae (not neessarily233



234 CHAPTER 15. NON-PERTURBATIVE APPROXIMATION METHODSspae), in whih the approximate solution is to be found.
{ |ψ〉a1...an|ai ǫMi, i = 1, ..., n} = U (15.1)(2.) Minimize the expetation value of the Hamiltonian in the subset U withrespet to a1...an, i.e.
〈H〉 = 〈ψ|H|ψ〉〈ψ|ψ〉 (15.2)should beome minimal. This method gives an upper bound for the groundstate energy and an approximate ground state wave funtion. The aurayof this method depends on the proper hoie of the model wave funtion.Example: Helium atom

H =

(
−~2~∇2

1

2m
− Ze2

~x1

)
+

(
−~2 ~∇2

2

2m
− Ze2

~x2

)
+

e2

|~x1 − ~x2|
, (15.3)where Z = 2 is the nulear harge number and ~x1, ~x2 are the oordinates ofthe eletrons respetively. We expet that both eletrons are in an s-wave state(Para-Helium). The e�et of the seond eletron on the motion of the �rst ele-tron is approximately to sreen the nulear harge.Model wave funtion:The Slater determinant of two H ground state wave funtions aording to ane�etive nulear harge Z̄ is given by

ψ(~x1, ~x2, Z̄) = ψ0(~x1, Z̄)ψ0(~x2, Z̄) 1√
2
( | ↑↓〉 − | ↓↑〉 ). (15.4)Furthermore the normalized hydrogen ground state wave funtion reads

ψ0(~x, Z̄) =

√
1

πā3
0

e
− r

ā0 (15.5)with
ā0 =

~2

Z̄me2
. (15.6)
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〈H〉Z̄ = 〈ψ|H|ψ〉Z̄ (15.7)

= 2E0(Z̄)− 2 〈ψ0| e
2(Z−Z̄)
r
|ψ0〉+ 〈ψ| e2

|~x1−~x2| |ψ〉 (15.8)
E0(Z̄) = −mZ̄2e4

2~2 = −Z̄2Ry (15.9)
〈ψ0| e

2Z̄
r

Z−Z̄
Z̄
|ψ0〉 = 2RyZ̄2 Z−Z̄

Z̄
(15.10)

〈ψ| e2

|x1−x2| |ψ〉 =
5

4
Z̄Ry (15.11)

〈H〉Z̄ = 2Ry (−Z̄2 − 2Z̄(Z − Z̄) + 5
8
Z̄) (15.12)

= 2Ry (Z̄2 − 2Z̄Z + 5
8
Z̄) (15.13)Minimum for the e�etive redued harge:

∂

∂Z̄
〈H〉Z = 2Ry (2Z̄ − 2Z +

5

8
) = 0 (15.14)

Z̄ = Z − 5

16
= 2− 5

16
=

27

16
, (15.15)sine Z is in this ase 2.15.2 The method of the self-onsistent �eld (Hartreeand Hartree-Fok method)In this setion we want to disuss an approximation method for systems of severalor many partiles. The diret produt wave funtion

ψ = ϕ1(~x1)ϕ2(~x2)...ϕN (~xN) (15.16)or Slater determinant is an exat solution only if the Hamiltonian is a sum ofsingle-partile Hamiltonians, i.e. for systems without partile-partile intera-tion.In the Hartree and in the Hartree-Fok approximations the partile-partile in-teration is treated approximately and one assumes that the problem of a singlepartile in an arbitrary external potential is solvable.
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• Hartree approximation:The many-partile wave funtion is approximated by a diret produt ofsingle-partile wave funtions. For one given partile, let's say partile i,the density of the other (N − 1) partiles generates an e�etive potentialand one determines all N single-partile wave funtions for this problem→self-onsistent problem.
• Hartree-Fok approximation:In addition to the Hartree approximation, the total antisymmetry of thewave funtion is taken into aount, i.e. a Slater determinant of single-partile wave funtions is taken as an Ansatz.Hartree approximation:We will derive the Hartree approximation from variational priniple. First of allwe de�ne the many-partile wave funtion as a produt of single-partile wavefuntions,
ψ(~x1, ..., ~xN) = ϕ1(1)...ϕN(2), (15.17)where the single-partile wave funtions are given by
ϕi(i) = ϕi(~xi)χ(msi

). (15.18)
ϕi(~xi) is the position wave funtion and χ(msi

) is the spin wave funtion. Thenormalization ondition, whih will be implemented by Lagrange parameters εi,reads
∫
d3x |ϕi(~x)|2 = 1, i = 1, ..., N. (15.19)
〈H〉 −

∑

i

εi

(∫
d3x ϕ∗

i (~x)ϕi(~x)− 1

)
= (15.20)

∑

i

{∫
d3x [ϕ∗

i (~x) (− ~
2

2m
~∇2 − Ze2

|~x| − εi)ϕi(~x) ] + εi

}

+
∑

i6=j

∫
d3x

∫
d3y ϕ∗

i (~x)ϕ
∗
j(~y)

e2

|~x−~y| ϕi(~x)ϕj(~y) (15.21)The variation with respet to ϕ∗
i (~x) yields

(
− ~2

2m
~∇2 − Ze2

|~x| +
∑

j 6=i
∫
d3y

e2|ϕj(~y)|2
|~x−~y|

)
ϕi(~x) = εi ϕi, (15.22)



15.2. THE METHOD OF THE SELF-CONSISTENT FIELD 237where the fator e2|ϕj(~y)|2/|~x − ~y| is the harge density ρ(y) of partiles j 6= i.Equation (15.22) is the single-partile Shrödinger equation for a partile i in ane�etive potential generated by the external potential and by the harge densityof the partiles j 6= i. The Lagrange parameter εi is the single-partile eigenen-ergy.Hartree-Fok approximation: (fermions)Ansatz:
ψ(1, ..., N) =

∣∣∣∣∣∣∣

ϕ1(1) · · · ϕ1(N)... ...
ϕN(1) · · · ϕN(N)

∣∣∣∣∣∣∣
(15.23)Expetation value of H in the Slater state ψ:

〈H〉 −
∑

i

εi

(∫
d3x ϕ∗

i (~x)ϕi(~x)− 1

) (15.24)
=

∑

i

{∫
d3x [ϕ∗

i (~x)(− ~2

2m
~∇2 − Ze2

|~x| − εi)ϕi(~x)] + εi

} (15.25)
+

1

2

∑

i6=j

∫
d3x

∫
d3y ϕ∗

i (~x)ϕ
∗
j(~y)

e2

|~x− ~y|ϕj(~y)ϕi(~x) (15.26)
−1

2

∑

i6=j

∫
d3x

∫
d3y ϕ∗

i (~x)ϕ
∗
j(~y)

e2

|~x− ~y| ϕj(~x)ϕi(~y) δmsi,msj
(15.27)(15.28)Variation with respet to ϕ∗

i (~x):
(− ~2

2m
~∇2 − Ze2

|~x| )ϕi(~x) +
∑

i6=j
∫
d3y e2

|~x−~y| |ϕj(~y)|2 ϕi(~x)

−1

2

∑

i6=j
δmsi,msj

∫
d3y

e2

|~x− ~y| ϕ
∗
j(~y)ϕi(~y)ϕj(~x) (15.29)

= εi ϕi(~x) (15.30)Remarks:
• The Hartree and the Hartree-Fok equations are a set of self-onsistent,non-linear integro-di�erential equations.
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• They an be derived from a variational priniple. This means that, at leastfor the ground state, the H- or HF approximations give the best single-partile diret produt of Slater wave funtions.


