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C 1.1 Natural Units and Mass Dimensions

We have seen in the lecture that it is convenient to use the so-called ‘Natural Units’ in high-
energy physics. This allows us to express all quantities in powers of energy. Through this exercise
we wish to get some practice working with them. Using ~ = c = kB = 1, express the following
quantities in powers of GeV and hence write their mass dimensions:

(a) 1 K

(b) 1 g

(c) 1 cm

(d) 1 mb (millibarn)

C 1.2 Lagrangians, Feynman Diagrams and All That

The aim of this exercise is to give a quick (and dirty!) introduction to certain aspects of field
theory that shall be important to us throughout this course. In particular, we wish to develop
a working knowledge of Feynman diagram computations. The formal aspects including deriva-
tions and the reasoning behind certain claims, however, we leave for a proper QFT course (of-
fered next semester). Note that throughout this course, we shall be using the metric signature
gµν = diag (+1,−1,−1,−1).

I) φ4 Theory: One of the simplest theories we can work with is the φ4 theory of an interacting
real scalar field φ described by the Lagrangian,

L =
1

2
∂µφ∂µφ−

m2

2
φ2 − λ

4!
φ4. (1)

(a) Calculate the mass dimensions of φ,m and λ.

We already know that symmetries play an important role in physics and the Lagrangian formula-
tion is useful because it makes the symmetries of a theory explicit. As we shall see, in field theory
this is especially important. For the above theory, the symmetry is a global Z2 mapping φ to −φ.

(b) Show that all the terms in the Lagrangian above satisfy the Z2 symmetry. Thus, argue why
there is no λ3φ3/3! term.

(c) Is a term of the form λ6φ
6/6! allowed? If so, why do we not consider it?

Hint: Consider the mass dimension of λ6.
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Next, we want to introduce Feynman computations. These allow an intuitive, diagrammatic way
of going from the abstract Lagrangian to observables that can be measured experimentally. The
relevant steps for a scalar field theory are:

• Write down the corresponding factors for propagators (say P ) and interaction vertices (say V )
of the theory from the Lagrangian (in momentum space). These are the so-called Feynman
rules.

• Draw all possible diagrams for the process you are interested in, labelling the time direction
and momenta.

• The diagrams have 3 components: external lines, internal lines (propagators) and vertices.
Begin reading the diagram at any of the external scalar lines and follow it writing down a
factor of 1 for every external line, a factor of P for every internal line and a factor of V for
every vertex you encounter. This gives you iM whereM is the matrix element.

• Sum the matrix elements corresponding to all diagrams to get the total matrix element and
square it to get the matrix element squared which can then be related directly to observables.

Let us see the above in action for φ4 theory now.

(d) Write down the Feynman rules corresponding to the propagator and the interaction vertex
for the Lagrangian of Eqn. (1).

(e) Draw the Feynman diagram(s) corresponding to the process φ(p1)φ(p2) → φ(p3)φ(p4) la-
belling the time axis and momenta and write down the corresponding matrix element(s)
using the steps discussed above and the Feynman rules from part (d).

(f) Write the squared total matrix element |M|2 and hence calculate the differential cross-section
measured in the centre-of-mass frame using the formula(

dσ

dΩ

)
cm

=
|M|2

64π2E2
cm

, (2)

where Ecm is the centre-of-mass energy.

Recall that the differential (or total) cross-section is a measure of the probability of a process to
occur and is an observable that can directly be measured at colliders1. We have thus just com-
pleted our first Feynman calculation. Although trivial, it is still sufficient to see how one can go
from an abstract theory to an observable by following the Feynman procedure. Let us now move
onto a more interesting case.

II) Scalar Yukawa Theory: Consider the following Lagrangian consisting of two real scalar
fields φ1 and φ2,

L =
1

2
∂µφ1∂µφ1 −

m2
1

2
φ21 −

g

2
(φ1)2φ2 +

1

2
∂µφ2∂µφ2 −

m2
2

2
φ22. (3)

(a) Calculate the mass dimensions of φ1,m1 and g.

(b) Write down the Feynman rules of the theory, i.e. the propagators for all the involved fields
and the interaction vertices.

(c) Draw the Feynman diagram(s) corresponding to the process φ1(p1)φ1(p2) → φ1(p3)φ1(p4)
with appropriate labelling as before. Use the Feynman rules of part (b) to write down the
corresponding matrix element(s).

1See, for instance, Chapter 4 of Peskin and Schroeder for a reminder.
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(d) Calculate the squared total matrix element and show that in the centre-of-mass frame, we
have,(
dσ

dΩ

)
cm

=
g4

64π2E2
cm

(
1

2|~p|2 (1 + cosθ) +m2
2

+
1

2|~p|2 (1− cosθ) +m2
2

+
1

m2
2 − 4|~p|2 − 4m2

1

)2

,

(4)

where |~p| is the absolute value of the three momenta of the external particles and θ is the
angle between ~p1 and ~p3 in the centre-of-mass frame.

(e) Simplify the above expression in the limit of a very heavy φ2 and compare it to the expression
obtained in Eqn. (2).

(f) To get a bit more practice, draw the Feynman diagrams for the process φ1(p1)φ1(p2) →
φ2(p3)φ2(p4). No need to write down the matrix elements though!

C 1.3 Fun with Field Theory (Strictly Optional)

We have gained a bit of experience with Feynman computations and shall continue to explore
it in the coming sheets. In the meantime, if you are curious about the connection we have found
in part (e) above, this exercise explores it a bit further. After all, we started with two very different
Lagrangians that led to very different Feynman diagrams. And yet, in the considered limit, the
calculated cross-sections are very similar. Let us understand this.

(a) Argue that in the limit of a very heavy φ2 field, we can neglect its kinetic term in the
Lagrangian of Eqn. (3).

(b) Use the Euler-Lagrange equation of motion of φ2 in order to eliminate it from the Lagrangian
completely. This procedure is known as ‘integrating out’ φ2; one may only do it for a field
that is not dynamic (no kinetic terms).

(c) Show that the above steps reduce the theory to a φ41 theory. What is the value of the coupling
constant?

Thus, we see that in the limit of a very heavy φ2, the Scalar Yukawa Theory reduces to a theory
with a quartic interaction. This explains why the cross-sections were similar. This transformation
of one theory into another (depending on the energy scale we are interested in) is a very general
phenomenon in QFT that shall be explored proper in the QFT courses.
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