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H11.1 CP -violation of the Weak Interaction 17 points

In this exercise we will see how the weak interaction leads to CP -violation in interactions in-
volving quarks. In order to see this, we have to consider how the relevant part of the weak in-
teraction transforms under the combined action of the discrete parity (P ) and charge conjugation
(C) transformations.

(a) Parity is a so called external symmetry as it acts on the space time arguments of the field
operators. A fermionic field with flavour index i transforms under parity as

P : ψi(t, ~x)→ γ0ψi(t,−~x)

and a (charged or neutral) vector boson Aµ transforms as

P : A0(t, ~x)→ A0(t,−~x),

P : Ak(t, ~x)→ −Ak(t,−~x) for k = 1, 2, 3.

Use this to show the transformation of the following interaction terms

P : ψi(t, ~x)Aµ(t, ~x)γµψj(t, ~x) → ψi(t,−~x)Aµ(t,−~x)γµψj(t,−~x),

P : ψi(t, ~x)Aµ(t, ~x)γµγ5ψj(t, ~x)→ −ψi(t,−~x)Aµ(t,−~x)γµγ5ψj(t,−~x).

Hint: Recall your calculations from H.3.1. part (i). (2 points)

(b) Charge conjugation is an internal symmetry as it acts purely on the fields and not their
space-time arguments. A fermion field of flavour i transforms as

C : ψi → −iγ2ψ∗i ,

whereas a charged vector boson transforms as

C : A±µ → −A∓µ .

In simplified terms we can say that C transforms particles into anti-particles and vice versa.
Furthermore it is useful to know, that in both the Dirac- and Weyl-representation of the
gamma matrices the transposed matrices read

γT0 = γ0, γT1 = −γ1, γT2 = γ2, γT3 = −γ3 and γT5 = γ5.

In these representations only γ2 has complex valued components and γ∗2 = −γ2. Make use
of the previous definitions to derive

C : ψiA
±
µ γ

µψj → ψjA
∓
µ γ

µψi,

C : ψiA
±
µ γ

µγ5ψj → −ψjA∓µ γµγ5ψi.

Hints: For the transformations of the fermion bilinears you might want to look at explicit
components of γµ. Keep in mind that the fermion field operators are anti-commuting because
of Fermi-Dirac statistics. (4 points)
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(c) Combine your previous results to show that

CP : ψi(t, ~x)A±µ (t, ~x)γµψj(t, ~x) → ψj(t,−~x)A∓µ (t,−~x)γµψi(t,−~x),

CP : ψi(t, ~x)A±µ (t, ~x)γµγ5ψj(t, ~x)→ ψj(t,−~x)A∓µ (t,−~x)γµγ5ψi(t,−~x).

(2 points)

(d) The relevant part of the weak interaction Lagrangian reads in the mass basis (we omit the
ˆ - labels for the sake of brevity)

Lint. =
g√
2

(
(V )ij (ui)LW

+
µ γ

µ (dj)L + (V ∗)ij (dj)LW
−
µ γ

µ (ui)L

)
. (1)

In this context we denote the CKM matrix as V and the quark flavours are i = u, c, t as well
as j = d, s, b. Insert the chirality projectors and use part (c) to find the CP -transformed
Lagrangian. Show that CP is violated due to the complex valued CKM-matrix elements.
Hint: Ignore the space-time arguments of the field operators. (2 points)

(e) One of the foundations of quantum field theory is the CPT -theorem. It states that any
local quantum field theory, which is Lorentz-invariant and described in terms of a hermi-
tian Hamiltonian (together with a Lorentz-invariant vacuum) must be invariant under the
combined action of C, P and time reversal T . Since CP is violated in the weak interaction,
what does this imply for T? (1 point).

(f) Time reversal acts on fermionic fields as

T : ψi(t, ~x)→ γ1γ3ψi(−t, ~x)

and a (charged or neutral) vector boson Aµ transforms as

T : A0(t, ~x)→ A0(−t, ~x),

T : Ak(t, ~x)→ −Ak(−t, ~x) for k = 1, 2, 3.

In addition to that T is the only transformation that also acts on the parameters and
matrices of the Lagrangian by mapping each complex number to its complex conjugate. For
the gamma matrices (in the Weyl- or Dirac-representation) this implies

T : γ0,1,3,5 → γ0,1,3,5 ,

T : γ2 → γ∗2 = −γ2.

Apply these transformations to deduce

T : ψi(t, ~x)Aµ(t, ~x)γµψj(t, ~x) → ψi(−t, ~x)Aµ(−t, ~x)γµψj(−t, ~x)

T : ψi(t, ~x)Aµ(t, ~x)γµγ5ψj(t, ~x)→ ψi(−t, ~x)Aµ(−t, ~x)γµγ5ψj(−t, ~x)

Hint: For the transformations of the fermion bilinears you might want to look at explicit
components of γµ again. (3 points)

(g) Now apply part (f) to find the T -transformed Lagrangian of equation (1). Show that T is
violated due to the complex valued CKM matrix elements. (1 point)

As time reversal basically leaves the structure of the interaction terms invariant and just affects
the complex couplings, we can deduce that complex valued couplings will lead to T -violation and
therefore CP -violation. This is much easier and faster to check, than having to compute the CP
transformed Lagrangian.
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However complex couplings are just a necessary ingredient for CP -violation, but not always suf-
ficient as we will see from the following phenomenological example: The matrix element for the
oscillation between a K0-meson and a K0, which occurs via a 1-loop box diagram, is found to be

〈K0| iLint |K0〉 =
G2
F

16π2
〈K0| dγµPLs sγµPLd |K0〉

·
∑

u1,u2=u,c,t

V ∗u1dVu1sV
∗
u2dVu2sf

(
m2
u1
,m2

u2
,m2

s,m
2
d,m

2
W

)
.

Here 〈K0| dγµPLs sγµPLd |K0〉 encodes the non-perturbative QCD-dynamics of having quark-
antiquark pairs forming a bound state meson. This is similar to the origin of the pion-decay
constant fπ we encountered in H.10.1 and not relevant for the rest of this discussion.
The so called loop-factor f

(
m2
u1
,m2

u2
,m2

s,m
2
d,m

2
W

)
arises from the loop integration over the

momenta of the virtual particles inside the box diagram and depends on their masses as well as
the masses of the mesons’ constituent quarks. For our discussion we do not need to know its
precise form.

(h) Qualitatively argue that this amplitude violates CP by determining which CKM matrix
elements appear. The CKM matrix may be written as a product of three rotations (with
cij = cos(θij) and sij = sin(θij) ) and a phase matrix resulting in:

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c12s13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 .

(1 point)

(i) What happens to the matrix element in the case of all up-type quarks (u, c, t) having the
same mass? Hint: Use the unitarity of the CKM matrix. (1 point)

The previous example shows that CP violation in the K0-K0 system is only observable due to the
different quark masses. After all the K0-K0 transition amounts to a flavour-changing neutral
current (FCNC) process. 1 Historically such FCNCs were observed with very suppressed rates
compared to flavour changing carged current processes. FCNCs would be exactly cancelled by the
unitarity of the CKM matrix (historically known as the Glashow–Iliopoulos–Maiani (GIM) mech-
anism for the case of only 2 generations of quarks) if it was not for the factors involving different
quark masses. We conclude that in general we need both complex mixing matrix elements and
different quark masses to observe CP -violation.

H11.2 Loops and All That 8 points

(a) Draw the loop diagram involving a photon loop correction to the propagator in Compton
scattering and calculate its superficial degree of divergence. (1 point)

(b) Feynman Parameters: Prove the identity

1

A1A2
=

∫ 1

0

dx1dx2δ
(2) (x+ y − 1)

1

[x1A1 + x2A2]
2 .

(1 point)
1It is flavour changing because e.g. the strangeness quantum number is changed by two units and neutral because

the net electric charge of the mesons is unchanged.
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The above is a special case of the same trick used in the lecture. The general identity, which can
be proved through induction, is:

1

A1 · · ·An
=

∫ 1

0

dx1 · · · dxnδ(n)
((

n∑
i=1

xi

)
− 1

)
(n− 1)!

[x1A1 + · · ·+ xnAn]
n .

Next, we wish to prove the master formula that we encountered in the lecture for D-dimensional
integrals, ∫

dDk

(2π)
D

k2a

(k2 −∆)
b

= i (−1)
a−b 1

(4π)
D/2

1

∆b−a−D
2

Γ
(
a+ D

2

)
Γ
(
b− a− D

2

)
Γ (b) Γ

(
D
2

) , (2)

where Γ (x) is the gamma function.

(c) First, substitute k0 → ik0 in the integral above. This trick is called Wick rotation and it
allows us to write the integral in terms of the so-called ‘Euclidean momentum’ kE which
satisfies k2E = k20 +~k

2
. (1 point)

Since we are now dealing with Euclidean space, we can go to D-dimensional spherical coordinates
to perform the integral.

(d) Rewrite the integral in spherical coordinates. Then evaluate the angular part of the integral
to obtain

ΩD =

∫
dΩD =

2πD/2

Γ
(
D
2

) .
Hint: Begin with a one-dimensional Gaussian integral and multiply it by itself D times.
Rewrite it in spherical coordinates and factorise the angular and radial parts. Evaluate the
latter by suitable substitution to recover the gamma function. Finally equate the expression
to (
√
π)
D to figure out the angular part. (2 points)

(e) Finally, use the Euler beta function’s properties,

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
= 2

∫ ∞
0

dt t2x−1
(
1 + t2

)−x−y
,

to prove ∫
dkE

kaE

(k2E + ∆)
b

= ∆
a+1
2 −b

Γ
(
a+1
2

)
Γ
(
b− a+1

2

)
2Γ (b)

.

Putting together the results of (c), (d) and (e) gives us the master formula. (2 points)

(f) Argue why a term with a numerator that is linear in the momentum kµ vanishes as seen in
the lecture. You can consider the specific example of the integral,∫

d4k

(2π)
4

k · p
(k2 − p2)

4 . (3)

(1 point)
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