
Physikalisches Institut Exercise 2
Universität Bonn 22nd October 2019
Theoretische Physik WS 19/20

Exercises in Theoretical Particle Physics
Prof. Herbert Dreiner

–Homework Exercises–
Due October 28th 2019

H 2.1 Dirac Equation and Gamma Matrices 15 points

The Dirac Hamiltonian was introduced in the lecture,

H = ~α · ~p+ βm, (1)

where, as we saw, αi with i = 1, 2, 3 and β are matrices such that:

• α1, α2, α3 and β all anti-commute with each other, and

• α2
i = β2 = 1.

(a) Prove that αi, β are Hermitian, traceless matrices of even dimensionality with eigenvalues
= ±1. Argue that 2× 2 matrices cannot satisfy the above requirements. (4 points)

Thus, the lowest dimensionality of matrices that can satisfy the required properties is 4× 4 with
the explicit form depending on the representation. In the lecture, the gamma matrices were
introduced:

γµ := (β, β~α) , (2)

with µ = 0, 1, 2, 3 as usual.

(b) Show that the gamma matrices satisfy the Clifford algebra,

{γµ, γν} = 2gµν1. (3)

(1 point)

Following the lecture, we also introduce the fifth gamma matrix as,

γ5 := iγ0γ1γ2γ3. (4)

(c) Basic Properties of Gamma Matrices: Use the definition of the gamma matrices and the
Clifford algebra to show that the following hold:

•
{
γµ, γ5

}
= 0

•
(
γ0
)2

= 1

•
(
γi
)2

= −1 with i = 1, 2, 3

•
(
γ5
)2

= 1

• (γµ)
†
= γ0γµγ0

•
(
γ5
)†

= γ5. (3 points)
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While calculating cross-sections in processes involving fermions, we shall find that the expressions
often contain traces over gamma matrices, and their contractions. We shall now prove some
identities that will help us in simplifying such expressions.

(d) Trace Technology : Without using any specific representation, prove the following trace rela-
tions:

• Tr(γµγν) = 4gµν

• Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

• Tr(γµ1 . . . γµn) = 0 with n odd

• Tr
(
γ5
)
= 0

• Tr
(
γµγνγ5

)
= 0

• Tr
(
γµγνγργσγ5

)
= −4iεµνρσ with εµνρσ the totally antisymmetric symbol normalised

to be +1 for an even permutation of 0, 1, 2, 3. (5 points)

(e) Contractions: Again, without introducing any specific representation, prove that the follow-
ing identities hold:

• γµγµ = 41

• γµγνγµ = −2γν

• γµγνγργµ = 4gνρ1

• γµγνγργσγµ = −2γσγργν . (2 points)

H 2.2 Yukawa Theory with Fermions 10 points

In this exercise we will investigate the most simple interacting field theory involving spin 1/2
fermions and scalars, which is known as the Yukawa interaction. It was first introduced to de-
scribe the attractive force between nucleons (protons, neutrons) mediated by the exchange of
the neutral (pseudo)scalar meson π0. Later in this course we will also see how the interaction be-
tween the Higgs boson and the quarks or charged leptons can be described by a similar Lagrangian.

In the following, ψ denotes the spin 1/2 fermion field operator and ψ is the corresponding anti-
fermion field. φ is a real scalar field. The Lagrangian reads

L =
1

2
∂µφ∂µφ−

m2
φ

2
φ2 − V (φ)− ψ (i∂µγ

µ −mψ)ψ − gψψφ. (5)

For our purposes we do not need to know the scalar potential V (φ). The Feynman rule for the
new interaction between fermions and scalars can be found at the end of this exercise.

(a) Take a look at the kinetic term for the fermion in Eqn. (5) to find the mass dimension of the
fermion field operator ψ. Using this knowledge, what is the mass dimension of the coupling
g in Eqn. (5)? (1 point)

In order to compute scattering matrix elements involving fermions from Feynman diagrams, we
need to introduce the following new steps into our algorithm:

• (Anti-)Fermion lines have an arrow that describes the particle-number flowing into or out of
a given vertex.

∗ Make sure that you have only continuous fermion arrows at each given vertex since
particle-number is conserved.

∗ An arrow in the direction of time corresponds to a fermion.

∗ An arrow against the direction of time stands for an anti-fermion.
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• Assign momentum arrows to each external particle. Enforce four-momentum conservation
at each vertex.

• When computing an amplitude from a given diagram, start traversing the external fermion
lines against the direction of the fermion-arrows and assign spinor wave-functions:

∗ For an incoming (outgoing) fermion with momentum p and spin s write u(p)s (u(p)s).
∗ For an incoming (outgoing) anti-fermion with momentum p and spin s write v(p)s
(v(p)s).
∗ s = 1 (s = 2) denotes the eigenvalue 1/2 (−1/2) of the spin operator along a given

quantisation axis (usually the z -axis). Think of s as a label and not as an index of
the spinors.

• When multiple diagrams contribute to the same process, you need to know the relative sign
between the contributing diagrams as fermions obey Fermi-Dirac statistics.

For example, consider the process ψ(p1, s1)ψ(p2, s2)→ ψ(p3, s3)ψ(p4, s4):

• The s-channel diagram has the spinor structure [v(p2)
s2u(p1)

s1 ] [u(p3)
s3v(p4)

s4 ].

• The t-channel diagram has the spinor structure [u(p3)
s3u(p1)

s1 ] [v(p2)
s2v(p4)

s4 ].

The [. . . ] symbolise which spinors are contracted at a given vertex. Here the t-channel diagram
has a relative − sign compared to the s-channel one as the spinor ordering (3,1,2,4) is an odd
permutation of (2,1,3,4).

(b) Draw all diagrams contributing to the scattering process ψ(p1, s1)ψ(p2, s2)→ ψ(p3, s3)ψ(p4, s4)
and determine the matrix element.
Hint: There are two diagrams. What is their relative sign? (2 points)

(c) In order to square the matrix element we need to find its complex conjugate. To to so, first
show that

(u(pa)
sau(pb)

sb)
∗
= u(pb)

sbu(pa)
sa .

In the previous equation we have suppressed the spinor indices. Now compute the squared
matrix element |M|2. (2 points)

(d) In an actual experiment it is difficult to prepare a beam of incoming fermions with specific
polarisations s1 and s2. We therefore assume an unpolarised beam of incoming particles and
average over the polarisations of the incoming fermions with a factor of 1/2 for each massive
initial state fermion. Similarly most detectors can not measure spin polarisation, which is
why we will just sum over the outgoing spins states s3 and s4. Compute the unpolarised
matrix element squared given by∣∣M∣∣2 =

1

2

∑
s1=1,2

1

2

∑
s2=1,2

∑
s3=1,2

∑
s4=1,2

|M|2 .

To do so make use of the following completeness relation:∑
s=1,2

u(p)sαu(p)
s
β = pµ (γ

µ)αβ +mψδαβ . (6)

In this context α and β denote spinor indices and δαβ is the Kronecker Delta in four dimen-
sions . (2 points)

(e) Next evaluate all the traces involving gamma matrices using the identities from the previous
exercise H.2.1 (d). (2 points)
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(f) Further simplify your result by utilising the Mandelstam variables

s = (p1 + p2)
2
= (p3 + p4)

2
,

t = (p1 − p3)2 = (p2 − p4)2 ,

u = (p1 − p4)2 = (p2 − p3)2 ,

and p2i = m2
ψ for i = 1, 2, 3, 4. (1 point)

Finally the Lorentz invariant differential cross section is defined as:

dσ

dt
=

1

16πs2
∣∣M∣∣2 .

The Feynman rule for the aforementioned interaction vertex is given by:

∼ −ig

ψ

ψ

φ
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