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H 3.1 Lorentz Transformation Properties of Spinors 16 points

In this exercise we will investigate how spinors behave under Lorentz transformations in order to
construct the spinor bilinears that appear in the fermionic Lagrangian. A proper, orthochronous
Lorentz transformation can be written as

Λµν = exp
(
− i

2
ωρσMρσ

)µ
ν

. (1)

In this context, the generators are

(Mρσ)
µ
ν = i

(
ησνδ

µ
ρ − ηρνδµσ

)
.

(a) On the first exercise sheet we introduced the generators of boosts and rotations Ki and Si.
By identifying

Ki = −M0i and Sk =
1

2
εkijMij ,

show that, we get the form familiar from the first sheet:

Λ = exp
(
−i~ω · ~S − i~ζ · ~K

)
.

Further, find the components of ωρσ in terms of the boost- and rotation-parameters ~ζ, ~ω.
(2 points)

(b) In exercise H.1.3 we came across the following complex linear combinations of the aforemen-
tioned generators

TL
i ≡ S+

i :=
1

2
(Si + iKi) ,

TR
i ≡ S−i :=

1

2
(Si − iKi) ,

that allowed us to split the Lorentz algebra into two separate SU(2) algebras. By applying
these redefintions of the generators and keeping the commutation relations from H.1.3 in
mind, show that we can write

Λ = exp
(
−i
(
~ω − i~ζ

)
~T L
)
· exp

(
−i
(
~ω + i~ζ

)
~T R
)
.

(1 point)
The above factorisation allows us to define the so-called left and right chiral spinors. A
two-component spinor ψL transforming as

ψL → exp
(
−i
(
~ω − i~ζ

)
~T L
)
ψL
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is called a left-chiral spinor. Similarly a two component spinor ψR transforming like

ψR → exp
(
−i
(
~ω + i~ζ

)
~T R
)
ψR

is called a right-chiral spinor.
Since we are now dealing with two-component objects, the representation is also two-
dimensional; the generators of the SU(2) Lie algebras are given by the Pauli matrices:

T
L/R
i =

1

2
σi, for i = 1, 2, 3.

Keep in mind that for ψL we have TR
i = 0 and similarly for ψR we have TL

i = 0. For
convenience we introduce the following notation:

σµ = (1, ~σ) , σµ = (1,−~σ) ,

σµν =
i

4
(σµσν − σνσµ) , σµν =

i

4
(σµσν − σνσµ) .

(c) Show that under proper, orthochronous Lorentz transformations, one can rewrite the trans-
formation laws for ψL, ψR as:

ψL → exp
(
− i

2
ωµνσ

µν

)
ψL, ψR → exp

(
− i

2
ωµνσ

µν

)
ψR.

Hint: Rewrite S,K in terms of TL and TR. Use this to express Mµν in terms of TL and
TR and finally match Mµν to σµν and σµν . (2 points)

(d) In the so called Weyl or Chiral representation of the γ-matrices, a four component spinor Ψ
is constructed out of two two-component spinors in the following way:

Ψ =

(
ψL
ψR

)
.

Use the previous exercise (c) to show that it transforms as

Ψ→ Λ1/2Ψ = exp
(
− i

2
ωµνΣµν

)
Ψ, where Σµν :=

i

4
[γµ, γν ] . (2)

(2 points)

(e) Now that we know how Ψ transforms, we need to find the transformation behaviour of
Ψ = Ψ†γ0. Use the following result proved in the previous sheet,

(γµ)
†

= γ0γµγ0

to derive

Λ†1/2 = γ0Λ1/2γ0.

(1 point)

(f) We want to prove the relation

Λ−11/2γ
µΛ1/2 = Λµνγ

ν

that you have encountered during the lecture. To do so first prove

[γµ,Σνσ] = (Mνσ)
µ
ρ γ

ρ,

and use the expansions of Λ from Eqn. (1) and Λ1/2 from Eqn. (2) up to O
(
ω2
)
. (2 points)
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(g) In a similar fashion to part (f) show that

Λ−11/2γ
5Λ1/2 = γ5.

It might be helpful to first show that

[Σµν , γ5] = 0.

(1 point)

(h) For parity transformations, the structure of the transformations of Ψ and Ψ from parts (d)
and (e) remains unchanged. It can be shown that a Parity transformation acting on spinors
is given by

ΛP = γ0.

Deduce that

Λ−1P γ5ΛP = −γ5.

(1 point)

(i) Finally we are ready to study the structures of bilinears to see which objects are Lorentz
invariant and hence, allowed in a theory. Analyse how the following transform when you
apply either proper, orthochronous Lorentz transformations (Λ1/2) or parity (ΛP).

• ΨΨ

• Ψγ5Ψ

• ΨγµΨ

• Ψγ5γµΨ

Hint: In some cases it might be useful to look at explicit components of the gamma matri-
ces (4 points)

H 3.2 Solutions of the Dirac Equation, Again 9 points

In the lecture, we solved the free Dirac equation via an ansatz and found the solutions:

u(s)(~p) = N

(
χ(s)

~σ·~p
E+mχ

(s)

)
E > 0, (3)

u(s+2)(~p) = N

(
−~σ·~p
|E|+mχ

(s)

χ(s)

)
E < 0, (4)

with s = 1, 2, N some normalisation constant and χ(1) :=

(
1
0

)
, χ(2) :=

(
0
1

)
. In this task, we

shall rederive these solutions using an alternative approach that makes use of the transformation
properties of Dirac spinors derived in the previous exercise.

(a) First, we solve the free Dirac equation in the rest frame of the particle. The Hamiltonian
takes the simple form:

Hψ = βmψ,
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with m the mass of the particle. Use the Dirac-Pauli representation for β to show that the
solutions to the corresponding eigenvalue equation can be written as:

u
(s)
0 = N0

(
χ(s)

0

)
E > 0, (5)

u
(s+2)
0 = N0

(
0
χ(s)

)
E < 0, (6)

where the subscript 0 indicates that the solutions are in the rest frame. These, of course,
match the expressions above for ~p = 0, as they should. (1 point)

We now wish to obtain the solutions in a general frame of reference. For this, we may Lorentz
boost the rest frame Dirac spinors according to the result obtained in Eq. (2). For simplicity, we
restrict ourselves to a boost in the x direction; however, the results can be generalised.

(b) Before we begin, however, we should note that the transformation law in Eq. (2) was derived
in the Weyl representation. Consider a unitary transformation U relating the Weyl to the
Dirac representation,

γµD = UγµWU
† and ψD = UψW ,

where the labels W,D indicate the relevant representations. Derive the Lorentz transforma-
tion of a Dirac spinor in the Dirac representation. (1 point)

(c) Use the relation between ωµν and ~ζ determined in part (a) of the previous exercise and the
Dirac-Pauli representation to show that for a boost ζ in the x direction,

exp
(
− i

2
ωµνΣµν

)
= exp

(
ζα1

2

)
.

(2 points)

(d) Show that

exp
(
ζα1/2

)
= cosh (ζ/2) 14 + sinh (ζ/2)α1,

and hence calculate the form of the spinors in the boosted frame making use of the result of
part (b). (2 points)

(e) Use the relations between ζ and γ in order to express your results for u(s) in terms of the
energy, momenta and mass of the particle and show that the result obtained matches that
of Eqn. (3) upto the normalisation constant. (1 point)

(f) Repeat the above for u(s+2) and compare to Eqn. (4). What do you observe now? Explain.
(1 point)

(g) The normalisation constant for Eqns. (3) and (4) is chosen to be N =
√
|E|+m. Hence,

what is N0? Use this to show that the normalisation constant in the boosted frame is indeed
the correct one. (1 point)
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