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H 5.1 Goldstone’s Theorem 12 points

In this exercise we will investigate Goldstone’s theorem. If the ground state of a quantum field
theory is not invariant under the full symmetry group of the corresponding Lagrangian, this theo-
rem implies the existence of massless scalar particles. We want to understand how many of these
Goldstone-bosons arise.
Consider a Lagrangian with N scalar fields φ(x)j , where j = 1, . . . , N . The Lagrangian is invariant
under continuous transformations of (some n dimensional representation of) a group G. That is,
the transformations,

φ(x)j → φ(x)j + δφ(x)j , where δφ(x)j = i αaT ajk φ(x)k (a = 1, . . . , n), (1)

leave the Lagrangian invariant. Here, the αa are infinitesimal transformation parameters and the
T a are matrices in the relevant representation.

(a) We assume that the kinetic term of the scalar fields is invariant by itself. The scalar potential,
which is just some polynomial of the fields, should also be invariant. Demand that

V (φ(x)j)
!
= V (φ(x)j + δφ(x)j)

holds true and Taylor-expand the potential on the right hand side to first order around φ(x)j
to derive a condition on the first derivative of the potential. (1 point)

(b) Assume that the minimum of the scalar potential corresponds to the point:

φ(x)j |min = 〈0|φ(x)j |0〉 := 〈φ(x)j〉 .

We denote the vacuum with |0〉 and the above is the vacuum expectation value (vev) of the
fields. Apply another derivative with respect to φi to the expressions from the previous part
and evaluate them at the above point. Remember what happens to the first derivative of
the potential at the minimum and introduce the scalar mass matrix given by

mij =
∂2V

∂φiφj

∣∣∣∣
φ=〈φ〉

.

You should find:

mijT
a
jk 〈φk〉 = 0. (2)

(3 points)

The previous expression tells us that the mass matrix has a zero eigenvalue if at least one field
develops a vacuum expectation value. However, at this point we do not know which fields will
develop a vev.
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(c) Let us first take a step back and consider the charge operators Qa generating the symmetry
group. The charges are related to the conserved Noether currents as follows:

Qa =

∫
d3x ja0 (x) with jaµ(x) = i

∂L
∂(∂µφj)

T ajkφk.

The transformation of a scalar field operator in Eqn. (1) can be written in the equivalent
way:

φ(x)j → exp (iαaQa) φ(x)j exp
(
−iαbQb

)
(a, b = 1, . . . , n).

Expand the previous equation to first order in the infinitesimal transformation parameters
and find an expression for δφ(x)j solely in terms of αa, Qa and φj . Use your result to rewrite
Equation (2). (2 points)

(d) A general transformation of the vacuum is given by:

|0〉 → exp (iαaQa) |0〉 .

If the vacuum is invariant (symmetric) under the transformation, then exp (iαaQa) |0〉 =
|0〉. For spontaneous symmetry breaking, however, the vacuum is not invariant under the
symmetry, so that exp (iαaQa) |0〉 6= |0〉. Expand the transformation to first order in the
infinitesimal transformation parameter and then evaluate Qa |0〉 for both the symmetric and
the asymmetric vacuum. (2 points)

(e) Now we have all the ingredients to understand Eqn. (2) rewritten as,

mij 〈0| [Qa, φj ] |0〉 = 0. (3)

Let us assume that the vacuum in our case is invariant only under a subgroup H ⊆ G. We
label the charges such that the

• Qa with a = 1, . . . ,m generate H and leave the vacuum invariant.

• Qa with a = m+ 1, . . . , n do not leave the vacuum invariant.

In the above, m ≤ n labels the dimension of the relevant representation of H. Use your
findings from part (d) to analyse Eqn. (3) for both aforementioned cases to find in which
case the mass matrix will have massless eigenvectors.
Hint: It is enough to argue (or show) whether 〈0| [Qa, φj ] |0〉 is zero or not for a given
case. (2 points)

(f) Finally, how many of the scalars are massless? How is this number related to the dimen-
sionalities of (the representations of) G and H? (2 points)

Let us summarise by emphasising that if the theory has a vacuum which is not invariant under the
full symmetry group G of the Lagrangian but only under a subgroup H, there will be scalar fields
with non-zero vacuum expectation values. We observe one massless scalar for each generator of the
left coset G/H as these generators correspond to the charges that do not annihilate the vacuum.
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H 5.2 The Higgs Mechanism 13 points

We have seen on the previous exercise sheet that gauge invariance necessarily requires the medi-
ating bosons to be massless. However, we know that the electroweak interaction is mediated by
massive bosons. Thus, we need to generate these mass terms somehow. Our first approach could
be to just add them by hand. This is known as explicit symmetry breaking. However, for reasons
that will only become clear in a QFT course, this does not work.1 Further, once we give up on
the symmetry principle and arbitrarily add one term, we would have to also consider all other
possible terms. Fortunately, the alternate approach of spontaneous symmetry breaking provides
the way out - let us work out an example to see it. Consider the following locally SU(2) invariant
Lagrangian describing a complex scalar field:

L = (DµΦ)†DµΦ− µ2Φ†Φ− λ
(
Φ†Φ

)2
, (4)

where Φ =

(
φ1 + iφ2
φ3 + iφ4

)
is an SU(2) doublet, and Dµ = ∂µ + ig τ

a

2 W
a
µ is the covariant derivative

with the coupling g being the analogue of e from the previous sheet, τa the three Pauli matrices
and the W a

µ the three vector bosons (analogues of the photon from the U(1) case). The repeated
index a is to be summed over.

(a) Use the fact that the vector fields transform as W a
µ → W a

µ − 1
g∂µα

a (x) − εabcαb (x)W c
µ

under local SU(2) transformations, Φ→ eiα
a(x) τ

a

2 Φ, to show that a mass term for the vector
bosons breaks the gauge invariance of the Lagrangian. Here, εabc is the totally-antisymmetric
symbol with ε123 = 1.
Hint: Use the infinitesmial forms of the transformations. (1 point)

Let us therefore consider the spontaneous breaking of the SU(2) symmetry. Consider the potential
part of the Lagrangian,

V = µ2Φ†Φ + λ
(
Φ†Φ

)2
,

with λ > 0 in order to ensure that the potential is bounded from below.

(b) Consider, for a second, the case of Φ being a real number (and not a complex matrix). Plot
V as a function of Φ for the two cases: µ2 > 0 and µ2 < 0. Which case describes a theory
with spontaneous symmetry breaking?
Hint: As we saw in the previous exercise, the minima of the potential occurs at a non-zero
value of φ for SSB. (1 point)

(c) Now, back to the case of Φ being a matrix. Determine the condition on Φ,Φ† for minimising
V . These equations are sometimes referred to as the tadpole-equations. (1 point)

Thus, we see that the minima corresponds to a 3−sphere and we can choose any particular point,
φ0, on it as our ground state and expand around it. Let us make the choice φ1 = φ2 = φ4 = 0,

and φ23 ≡ v2 = −µ2

λ for φ0. Thus, a perturbation around this point gives us:

Φ =
1√
2

(
θ2 (x) + iθ1 (x)

v + h (x)− iθ3 (x)

)
. (5)

(d) Show that inserting the above into the original Lagrangian leads to mass terms for the vector
bosons and h, and kinetic and interaction terms for the fields θ1, θ2, θ3 but no mass terms.
These are the Goldstone bosons you have learnt about in the previous exercise. Further,
count the apparent number of degrees of freedom in the original Lagrangian and the one
that we have obtained now - what do you observe?
Hint: You can only consider the relevant terms and do not need to worry about prefac-
tors. (4 points)

1Adding a term violating the gauge symmetry explicitly essentially spoils the renormalisability of the theory.
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The above Lagrangian contains bilinear terms that are not diagonal in the fields and hence we
should be careful while reading off the particle spectrum. As in the lecture, we use gauge freedom
to rotate to a basis where the physical degrees of freedom are explicit - the so-called Unitary gauge.

(e) To do so, consider infinitesimal transformations to first show that Eqn. (5) can be equiva-
lently written as:

Φ = ei
θa(x)
v τa

(
0

v+h(x)√
2

)
. (6)

(3 points)

(f) Now argue how one would use gauge freedom to eliminate the θ fields completely from the
Lagrangian.
Hint: Compare the form of Eqn. (6) with the form of the gauge trasnformation of Φ and
compute what value of α could be used to rotate the θ fields away. (1 point)

Hence, we see that one can completely eliminate the θ fields from the Lagrangian; they were
unphysical degrees of freedom and we say that the Goldstone bosons have been ‘eaten up’ by the
vector bosons to gain masses.

(g) Finally read off the masses of the vector bosons and count the degrees of freedom again to
see that they match the number we began with. (2 points)
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