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H 6.1 Lepton Masses and Higgs Decay into charged Leptons 15 points

The Yukawa couplings between the Higgs field and the 3 generations or flavors of leptons in
the Standard Model are given by

Llept.
Yuk. = − (Yl)ij LiΦRj + h.c. where i, j = e, µ, τ. (1)

(Yl)ij is a 3× 3 matrix in the space of flavor. The leptonic doublet and singlet are given by

Li =

(
(νL)i
(eL)i

)
and Ri = (eR)i

respectively. Note that

eL = PL e and eR = PR e with PL/R =
1

2
(14 ∓ γ5) .

Φ denotes the Higgs doublet.

(a) After electroweak symmetry breaking and applying the unitary gauge the Higgs doublet is
given by

Φ =
1√
2

(
0

v + h(x)

)
Here v = 246 GeV denotes the Higgs vacuum expectation value and h stands for the
Higgs boson. Insert this into equation (2) and expand the Yukawa interaction into its
components. (1 point)

(b) Find the mass terms for the charged leptons after symmetry breaking. In general the Yukawa
coupling matrix Yl is neither hermititan nor symmetric. For this reason we can not just
diagonalize Yl with a single unitary matrix. Rather one diagonalizes YlY

†
l with two different

unitary matrices Ul and Kl. The diagonal coupling matrix Y diag
l is then given by

Yl = UlY
diag
l K†l .

The mass eigenstates are denoted with a ˆ over the field operator and one finds the relations:

êL = U†l eL, êR = K†l eR

Rewrite the Lagrangian for the lepton masses in the mass basis. How is the lepton mass
matrix

ml = diag (me,mµ,mτ )

related to Y diag
l ? (2 points)
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(c) Now rewrite the interactions of the charged leptons with the Higgs boson h in the lepton
mass basis. Eliminate all chirality projectors from the Lagrangian. You should find

Llept.
Yuk. = − (ml)ij

(
1 +

1

v
h

)
êiêj

for the sum of mass and interaction terms. (1 point)

The Higgs-lepton interaction is just the Yukawa interaction that you were introduced to in H.2.2
on sheet 2. The only difference is that the coupling g from said exercise is now lepton flavour
specific gl = ml

v (l = e, µ, τ).

(d) Using the Feynman rules for a Yukawa interaction from H.2.2 construct the Feynman diagram
for the decay process h→ l−(p1, s1) + l+(p2, s2) and find the matrix element. (2 points)

(e) Now determine the squared matrix element and carry out the sum over the final state fermion
spins s1 and s2. (2 points)

(f) Use the trace identities from H.2.1 to evaluate the unpolarized matrix element squared.
(1 point)

(g) In the Higgs boson rest frame the four-momenta read

Decaying particle: ph =

(
mh

~0

)
,

Outgoing particles: p1 =

(
E
~p

)
, p2 =

(
E
−~p

)
.

Here E2 = |~p|2 +m2
l . Use this to evaluate the products of four-momenta in the unpolarized

matrix element and express everything in terms of the Higgs and lepton masses. (2 points)

(h) The decay rate is given by

Γ
(
h→ l−l+

)
=

1

16πm3
h

λ
(
m2
h,m

2
l ,m

2
l

) 1
2
∑
s1,s2

|M|2 ,

where the Källén triangle function defined as

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

arises from the phase-space integration. Calculate the decay rate. (1 point)

(i) Using mh = 125 GeV and v = 246 GeV compute the partial decay rates for the cases

• l = e: me = 511 keV,

• l = µ: mµ = 106 MeV and

• l = τ : mτ = 1.77 GeV

Which one of these three decay channels has the largest partial width and why does this
occur? (3 points)
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H 6.2 Majorana Masses and the Weinberg Operator 10 points

Consider the usual Dirac Lagrangian describing a free, massive fermion,

L = Ψ (i∂αγ
α −m) Ψ.

Recall that the projection operators defined as,

PL :=
1

2

(
14 − γ5

)
, PR :=

1

2

(
14 + γ5

)
,

allow us to rewrite the fermion field in terms of its chiral components,

Ψ = ΨL + ΨR, (2)

with ΨL/R := PL/RΨ. We found good use for this decomposition while writing down the La-
grangian for the Standard model since the chiral components transform differently under the
gauge symmetries.

(a) Use Eqn. (2) in the Dirac Lagrangian above in order to rewrite it as:

L = iΨLγ
µ∂µΨL + iΨRγ

µ∂µΨR −m(ΨLΨR + ΨRΨL).

(1 point)

We define a Majorana fermion via the condition that the fermion field is identical to its charge
conjugate field.1 That is,

ΨM = ΨC
M ≡ CΨ

T

M ,

with C = iγ2γ0 the charge conjugation matrix from the lecture.

(b) Show that for a Majorana fermion, the choice ΨR = CΨ
T

L ≡ ΨC
L in Eqn. (2) is sensible

in the sense that it ensures the Majorana condition is satisfied, and the object ΨC
L indeed

behaves like a right-handed spinor. Further, what does the Lagrangian of part (a) look like
now?
Hint: Consider the action of PL on the object and use the property of the charge conjugation
matrix, PLC = CPTL . (2.5 points)

Note that in the above we could have also made the choice ΨL = ΨC
R and derived analogous

results in terms of the right-handed parts. But the important point is the important distinction:
for Dirac fermions, we need both left and right-handed components in order to write down mass
terms, whereas for Majorana fermions we can write it in terms of just the left (or right)-handed
parts. Let us now see this in action through a familiar example.

We know, in the Standard Model, neutrinos are massless. However, neutrino oscillation experi-
ments require non-zero masses for at least two of the three neutrino species. The origin of the
masses and their nature - Dirac, or Majorana - is still an open question; nevertheless, neutrino
physics provides one of the strongest evidences for physics beyond the Standard Model and is of
significant interest to high-energy physics currently. We quickly review a couple of mechanisms
for their mass generation here.
The simplest option would be to follow what we did for the other particles and generate a Dirac
mass term. However, as we saw - this would mean we have to add a right-handed partner for
each neutrino. As discussed in the lecture, these new partners would be singlets under all gauge
groups. For the rest of this exercise, we assume the single generation case for simplicity, without
losing generality of the discussion.

1Technically we can also allow a non-zero phase relating the two fields; however we set this to zero.
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(c) Assume that we add a singlet partner νR ≡ PRΨν to the SM. Why does the term LΦνR

where L =

(
νL
eL

)
is the lepton doublet and Φ =

(
φ+

φ0

)
is the Higgs doublet not work?

(0.5 points)

(d) Define Φ̃ := iτ2Φ∗ with τ2 the second Pauli matrix. Show that the terms yDLΦ̃νR + h.c..
are gauge invariant and lead to mass terms for the neutrinos after electroweak symmetry
breaking. (1.5 points)

(e) Use the experimental bound on the neutrino masses, mν ≤ O (0.1 eV), and the fact that the
electroweak symmetry breaking scale is v ∼ O (100 GeV) in order to derive a bound on the
Yukawa coupling yD. (1 point)

Thus, we see that even though it is simple enough to write down a Dirac mass term for neutrinos,
the required coupling has to be ‘unnaturally’ tiny (compare, for example, to the next smallest
one - the electron yukawa coupling ye ∼ O

(
10−6

)
). Further, there have been no hints for the

existence of the right-handed neutrino yet. Thus, the hierarchy could be a hint that the neutrino
mass scales are generated by a different mechanism.

(f) Consider adding to the Lagrangian, the terms yM
MN

(LΦ̃)(Φ̃TLC) + h.c. where yM is a dimen-

sionless coupling, MN is a new scale of mass dimension one, and LC =

(
νCL
eCL

)
. Show that

the term (called the Weinberg Operator) is gauge invariant and leads to a Majorana mass
term for the neutrino after electroweak symmetry breaking. (1.5 points)

(g) What are the mass dimensions of the operator added in the previous part? What does this
tell you about the renormalisability of the theory?
Hint: Recall what you had learnt in the Classwork Sheet. (0.5 points)

Thus, we see that an alternative to the Dirac mechanism is provided by considering the Weinberg
operator. However, being non-renormalisable, this can not be the fundamental theory. The idea
is that the fundamental theory occurs at a much higher energy scale MN ; at lower scales it is
‘hidden’ and can be approximated by the non-renormalisable effective theory - similar to what
happens in the Fermi interaction mentioned in the lecture and to the case we studied in the Bonus
exercise of the Classwork Sheet.

(h) Estimate the scale of new physics MN by using the bound on the neutrino masses and
assuming the yukawa yM to be of order one. (1 point)

(i) If there are two experimental proposals to search for the Majorana nature of a neutrino

• Look for double beta decay ((Z,A)→ (Z + 2, A) + 2e− + 2ν̄e), or

• Look for neutrinoless double beta decay ((Z,A)→ (Z + 2, A) + 2e−),

which experiment do you think could be more relevant?
Hint: Consider the lepton number in both reactions and see whether a Majorana mass term
conserves lepton number. (0.5 points)
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