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H 7.1 Couplings Between the Electroweak Gauge Bosons and Fermions 19 points

In this exercise we will diagonalise the mass terms of the electroweak gauge bosons and all the
charged fermions in order to determine their interaction vertices within the Standard Model. Let
us begin with the gauge bosons, whose masses arise from the gauge-kinetic term of the Higgs field
after spontaneous symmetry breaking:

Lgauge kin. Higgs = (DµΦ)
†
DµΦ, where DµΦ =

(
∂µ −

i

2
gW a

µσ
a − i

2
g′YΦBµ

)
Φ.

The hypercharge of the Higgs doublet Φ is YΦ = 1 and the doublet can be expanded after spon-
taneous symmmetry breaking in the unitary gauge as

Φ =
1√
2

(
0

v + h

)
.

(a) Find the mass terms of the gauge bosons. (1 point)

(b) For now let us focus on the fields W1 and W2. Even though their mass terms are already
diagonal these fields are not eigenstates of the electric charge operator Q = T3 + 1

2Y . TheW -
fields have hypercharge zero. Since the gauge bosons transform in the adjoint representation
of SU(2) (they behave like matrices under actions of the group) the action of the weak isospin
operator T3 = 1

2σ3 is given by [
T3,W

i
µσ

i
]
,

where i=1,2,3 and there is no sum over repeated indices of the above. Calculate the above
commutator forW 1

µσ
1,W 2

µσ
2 andW 3

µσ
3. You should find thatW 3

µσ3 has no electromagnetic
charge and that W 1

µσ
1 and W 2

µσ
2 are not eigenstates of the charge operator. Therefore we

define (
0 W+

0 0

)
,

(
0 0
W− 0

)
with W±µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
.

Find the electromagnetic charge of W± and the corresponding mass term. (2 points)

(c) Next we focus on B and W 3. Since both fields have no hypercharge and vanishing weak
isospin, they will be electrically neutral. Write the corresponding mass terms as a matrix
in the space spanned by

(
W 3
µ , Bµ

)
and diagonalise the mass matrix with an orthogonal

transformation. It is useful to define the electroweak mixing angle or Weinberg-angle via

tan (θW ) =
g′

g
.

The gauge bosons in the mass basis are the Z-boson and the photon A. What are their
masses and how are they related to W 3, B? (2 points)
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The interactions between the fermions and gauge bosons are encoded in the gauge-kinetic terms.
For now let us focus on the lepton sector:

Lgauge kin. Lept. = i LjDµγ
µLj + i RjDµγ

µRj , with j = e, µ, τ.

The action of the gauge-covariant derivative is given by

DµLj =

(
∂µ −

i

2
gW a

µσ
a − i

2
g′YLBµ

)
Lj and DµRj =

(
∂µ −

i

2
g′YRBµ

)
Rj .

The weak hypercharges are YL = −1 and YR = −2.

(d) Find the interaction terms between the Leptons and the gauge bosons. Then express the
W 1,W 2,W 3 and B in terms of W±, Z and A. Do not eliminate the chirality projectors
yet. (1 point)

(e) On the previous sheet we already saw how one diagonalises the charged lepton mass matrices.
First take a look at the W± interactions and insert

eL = Ul êL as well as eR = Kl êR.

The neutrinos are massless within the Standard Model. This implies there is no matrix
Uν needed to diagonalise the neutrino masses. Therefore we can relate the ’mass eigenstate’
neutrinos ν̂L to the gauge eigenstates via the same rotation matrix as for the charged leptons
νL = Ulν̂L. Use this to find the interactions ofW± with the leptons and eliminate all chirality
projectors from the interaction terms. (1 point)

(f) Next we investigate the interactions of Z and the photon with the charged leptons. Rewrite
the leptons in the mass basis and eliminate all chirality projectors. Write the couplings
solely in terms of g, sin (θW ) and cos (θW ). How is the electromeagnetic coupling e from
QED related to these parameters? (3 points).

So far we have focussed on the leptons; let us now turn our attention to the quark sector of the
SM. The Yukawa couplings of the quarks are given by the Lagrangian,

Lquarks
Yuk. = −

(
Y d

)
ij
QiΦDj − (Y u)ij QiΦ̃Uj + h.c. where i, j = 1, 2, 3. (1)

As on the previous sheet, the (Y )ij are 3 × 3 matrices in flavour space. The quark doublet and
singlet are given by

Qi =

(
(uL)i
(dL)i

)
, Di = (dR)i and Ui = (uR)i

respectively. As usual Φ denotes the Higgs doublet and Φ̃ := iτ2Φ is the object introduced in the
previous sheet.

Following what we did in the leptonic sector, in order to diagonalise the mass matrix, we will
have to use a biunitary transformation. The relation between the mass and gauge eigenstates is,

uL/R = UL/R ûL/R and dL/R = DL/R d̂L/R, (2)

where the unitary matrices U(D)L/R diagonalise the Yukawa matrices Y u(d), i.e.,

U†LY
uUR = Y udiag,

and an analogous version for Y d.
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(g) Similar to the previous sheet, give the Higgs field a vacuum expectation value in the unitary
gauge, perform the above diagonlisation and hence find the masses of the mass eigenstates
in terms of the vev. (1 point)

(h) The gauge-kinetic Lagrangian for the quarks has the same form that we saw above for the
leptons (replacing L with Q and R with U or D). The corresponding weak hypercharge
assignments are YQ = 1/3, YU = 4/3 and YD = −2/3. Use this to derive the interaction
terms between the quark gauge eigenstates and the W±, Z and A bosons. (1 point)

(i) Now, perform the unitary transformation in order to go the mass basis. Show that the
neutral currents are flavour diagonal but the charged currents involve a mixing matrix that
induces flavour-changing interactions. Show that it has the form V = U†LDL and hence prove
it is unitary. Eliminate all chirality projectors from the interaction. Write all couplings solely
in terms of g, sin (θW ) and cos (θW ). (3 points)

The mixing matrix that we have found is the Cabibbo-Kobayashi-Maskawa matrix (CKM matrix).
As derived in the lecture, it has 4 free parameters - we shall explore this again in the next task.

(j) Finally use the interaction terms you have derived above to symbolically draw all Feynman
vertices involving the field û1 and the bosons Z,A,W± assuming the case V13 ≈ 0 but
V11, V12 6= 0. You do not need to worry about writing the vertex factors but label the fields
in your diagrams properly! (3 points)

For completeness let us mention that in extensions of the Standard Model that can generate masses
for the neutrinos, there will be a matrix Uν needed for the diagonalisation of said matrix and this
transformation will in general be different from Ul.

(k) Assuming massive neutrinos, consider the W± interaction with the mass eigenstate leptons
again and find the mixing matrix VPMNS. (1 point)

For massive neutrinos the mixing is similar to the CKM mixing matrix in the quark sector. Even
though we do not know the origin of neutrino masses yet, the mixing angles of this Pontecorvo-
Maki-Nagakawa-Sakata-matrix (PMNS matrix) have been measured in various neutrino-oscillation
experiments in recent years.
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H 7.2 Angles and Phases of the CKM Matrix 6 points

In the exercises H 6.1 and and H 7.1 we already used some results from the diagonalisation
of the fermion mass matrices and this exercise will show you the necessary steps in detail. We will
focus on the number of mixing angles and phases appearing in the CKM matrix for the case of N
quark flavors or families.

(a) Since the mass matrix M is in general neither hermitian nor symmetric it can not be diago-
nalised by using just one unitary transformation. Show that MM† is hermitian for a N ×N
matrix M and one can thus write

MM† = SM2
dS
†, (3)

with M2
d being a diagonal matrix and S unitary. Show that the right-hand side of this

equation has N more free parameters than the left-hand side. Show that this leaves the
freedom to transform S → SF with F = diag(eiφ1 , . . . , eiφN ).

(1 point)

(b) Show that V = H−1M for a Hermitian matrix H = SMdS
† is unitary.

(1 point)

(c) Use part (b) to show that one may write M = SMdT
† with T = V †S unitary. Identify the

number of free parameters in this relation. Now you see explicitly why we need two different
transformation matrices to diagonalise M .

(1 point)

(d) The CKM matrix may be defined as VCKM = U†uUd with the biunitary transformation
matrices Ui and Vi for i = u, d which diagonalise the Yukawa couplings. Use part (c) to
show that VCKM has (N − 1)2 physical parameters.

(1 point)

(e) In the framework of U(N) the (N − 1)2 physical parameters can be interpreted as mixing
angles which are the same as in SO(N) and complex phases. Show that there are

(N − 1)(N − 2)

2

complex phases.
(1 point)

(f) Physical complex phases in the CKM matrix lead to CP violating processes. What is the
minimal amount of families to observe CP violation in the quark sector?

(1 point)
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