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H 8.1 Facing the Phase Space 12 points

In this exercise we will explore the origin of some of the relations we have been using in cross-section
calculations. We shall restrict ourselves to the special case of two final states.

(a) Begin by first showing the equality,∫ ∞
−∞

dk0δ
(
k2 −m2

)
Θ
(
k0
)

=
1

2Ek
,

where kµ is the four-momentum of a particle, m its rest mass and Ek is the associated energy.
Θ is the Heaviside step function which takes the value 1 for positive values of the argument
and 0 for negative values.
Hint: Use the property of the delta function, δ

(
x2 − a2

)
= 1

2|a| (δ (x− |a|) + δ (x+ |a|)) . (2 points)

(b) Show that for the restricted Lorentz group, the object
∫
d4kδ

(
k2 −m2

)
θ
(
k0
)
is Lorentz

invariant.
Hint: Recall how an integration measure transforms under a change of variables. (1 point)

(c) Now argue that the object from the previous part is also invariant under parity and time
reversal and hence show that the phase space factor for two final states encountered in the
lecture,

R2 ≡
∫
dΠLIPS (2π)

4
δ4 (p− p1 − p2) ,

with dΠLIPS = d3p1
(2π)32E1

d3p2
(2π)32E2

is Lorentz invariant. Here i = 1, 2 labels the outgoing states,
pi and Ei are their momenta and energies respectively and p is the total momenta of the
incoming particles. (1 point)

(d) Use the result of part (a) to rewrite,

R2 = (2π)
−2
∫
d3p1
2E1

δ
(

(p− p1)
2 −m2

2

)
Θ ((p− p1)0) .

(1 point)

(e) Since R2 is Lorentz invariant, we can evaluate it in any frame; for our case, the centre-of-mass
frame is convenient. Label the momenta in the frame as,

p1 = (E1, ~pCM ) , p2 = (E2,−~pCM ) , p =
(√

s,~0
)
,

and show that momentum conservation along with the on-shell relations E2
i = p2i +m2

i leads
to the relations,

E1 =
s+m2

1 −m2
2

2
√
s

, E2 =
s+m2

2 −m2
1

2
√
s

, |~pCM | =
λ

1
2

(
s,m2

1,m
2
2

)
2
√
s

,

1



with λ
(
s,m2

1,m
2
2

)
= s2 + m4

1 + m4
2 − 2sm2

1 − 2sm2
2 − 2m2

1m
2
2 the so-called ‘Källén triangle

function’ already encountered in Sheet 6. (2 points)

(f) Go to spherical coordinates and use the result of the previous part in order to show that R2

simplifies to,

R2 =
|~pCM |
16π2

√
s

∫
dΩ =

λ
1
2

32π2s

∫
dΩ,

with Ω the solid angle. (1 point)

(g) Recall from the lecture the expression for the differential cross-section,

dσ =
|M|2

|vA − vB |2EA2EB
dR2,

where A and B label the incoming particles and the v’s are their velocities. Show that

|vA − vB |2EA2EB = 4
√

(pA · pB)
2 −m2

Am
2
B = 2λ

1
2

(
s,m2

A,m
2
B

)
. (1 point)

(h) Show that in the centre-of-mass frame, the differential cross-section becomes,(
dσ

dΩ

)
CM

=
1

64π2s

λ
1
2

(
s,m2

1,m
2
2

)
λ

1
2 (s,m2

A,m
2
B)
|M|2 =

1

64π2s

|~pf |
|~pi|
|M|2,

where |~pf |, |~pi| label the magnitude of the three-momenta of the final and initial particles
in the CM frame respectively. This is the expression that we have encountered a few times
already in this course. How does the expression simplify for the case of all particles being
the same? (1 point)

(i) Finally note that the above expression is not Lorentz invariant since it depends on the angles
in the CM frame. Use the definition of the Mandelstam variable t := (pA − p1)

2 in order to
find a relation between dΩ and dt and hence show,

dσ

dt
=

1

16πλ
1
2 (s,m2

A,m
2
B)
|M|2 =

1

64π|~pi|2s
|M|2

which is manifestly Lorentz invariant. (2 points)

H 8.2 Non-renormalizable interactions 13 points

On the past sheets we already mentioned that there exist operators, which are non-renormalisable.
As their name implies, these operators will lead to trouble once you calculate Feynman diagrams
involving loops and have to renormalise the bare masses and couplings. This is beyond the scope
of this class. However even if you use such operators at tree level there will be problems as this
exercise will demonstrate.

In 1933 Enrico Fermi developed a phenomenological theory of β-decay, which was a precursor
of the electroweak Standard Model you have encountered in this course. It describes interactions
in terms of charged and neutral currents and reads in a more modern formulation

LFermi = − 4√
2
GF

(
J+
µ J
− µ + Jneut

µ Jneut µ) , (1)

where

J+
µ = νlγµPLel + Vijulγµdj , J−µ =

(
J+
µ

)†
,
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and

Jneut
µ =

∑
a=ν,l,u,d

1

cos (θW )

(
ΨL

)
a
γµT

3 (ΨL)a −
sin (θW )

2

cos (θW )
QaΨaγµΨa.

We denote the CKM matrix elements by Vij , T 3 is the weak isospin generator and Q is the electric
charge operator. The electroweak mixing angle is given by θW . Furthermore the index l = e, µ, τ
denotes lepton flavour and i = u, c, t as well as j = d, s, b stand for the quark flavours. The above
interaction Lagrangian was written in the fermion mass basis and we drop the ˆ labels for now.

(a) What is the mass dimension of Fermi’s constant GF in (1)? Consequently is the interaction
renormalisable? (1 point)

One of the possible interactions in Fermi’s theory reads

Lint. = − 4√
2
GF (νeγνPLe) (µγνPLνµ) .

The appropriate Feynman rule can be found at the end of this exercise in equation (4).

(b) Write down the matrix element for the process νµ(p1)+e−(p2)→ µ−(p3)+νe(p4). (1 point)

(c) Calculate the squared matrix element. To do so, you first need to show that

[u(pi)γν (14 − γ5)u(pj)]
∗

= u(pj)γν (14 − γ5)u(pi).

(2 points)

(d) Calculate the average over intital state fermions spins and then sum over the final state
spins to find the unpolarised matrix element. Note that since the inital νµ is massless in
this model the average over the inital spins will be weighted by a factor of 1/2 and not 1/4.

(1 point)

(e) Use the identities from H.2.1 to evaluate the traces. (3 points)

(f) We are interested in the high energy limit, so we may neglect all fermion masses. Write the
unpolarised matrix element as a function of the Mandelstam variable s. Then compute the
differential cross section

dσ
dt

=
1

16πs2
1

2

∑
spins

|M|2 ,

and integrate over t ∈ [−s, 0] to find the absolute cross section

σ(s) =
G2
F

π
s. (2)

(2 points)

The tree level cross section calculated within Fermi’s theory diverges as s → ∞. Physical cross
sections should not behave like that. After all they are interpreted as the probability for a certain
interaction to occur and any probability should be normalized to 1. This line of reasoning is called
unitarity and (roughly) one can show that cross sections should not grow faster than

√
s. In the

electroweak Standard Model one finds the following cross section for the same process (neglecting
any fermion masses)

σ(s) =
g4

32πm2
W

s

s+m2
W

, (3)

where g is the SU(2)L gauge coupling and mW is the mass of the W± bosons.
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(g) Rewrite Eqn. (3) in terms of GF =
√
2
8

g2

m2
W
. What happens for s → ∞? Does this cross

section satisfy unitarity? Under which condition does the correct cross section reduce to the
result from Fermi’s theory? (3 points)

As you might have guessed by now, there is a connection between Fermi’s interaction and the full
electroweak theory: Fermi’s non-renormalisable interaction is obtained by integrating theW± and
Z bosons out of the the Standard Model. Consequently Fermi’s theory is only an approximation
valid for

√
s � mW ,mZ . We should have never used such an interaction for analysing the high

energy (s → ∞) behavior of the cross section to begin with. The fact that we neglected the
electron and muon masses does not affect our conclusion in any way.

The relevant Feynman rule is

− i 4√
2
GF (γνPL)cd (γνPL)ab , (4)

where a, b, c, d are spinor indices that indicate how to contract the external spinor wave functions
with the coupling matrices in spinor space:

νµ (b)

e (d)

µ (a)

νe (c)
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