Radiative Corrections, p_T -Spectrum and Decay of Resonantly Produced Sleptons at Tevatron and LHC

Sebastian Grab

University of Bonn

NRW Phänomenologie 2006

in collaboration with Maike Trenkel, Herbi Dreiner and Michael Krämer

Outline

R-Parity in the MSSM

2 Resonant single slepton production

- Leading order (LO)
- Next to leading order (NLO)
- Hadronic cross section

3 Transverse momentum spectrum

4 Slepton decay

5 Conclusion

R-Parity in the MSSM

R-Parity in the MSSM

The Yukawa interactions in the MSSM are described by:

$$\mathcal{L}_{W} = \frac{1}{2} \frac{\delta^{2} W}{\delta \varphi_{i} \delta \varphi_{j}} \overline{\psi_{L_{i}}^{c}} \psi_{L_{j}}$$

with the Superpotential:

$$W = (h^{E})_{ij}\tilde{L}_{i}H_{d}\tilde{e}_{R_{j}}^{c} + (h^{D})_{ij}\tilde{Q}_{i}H_{d}\tilde{R}_{j}^{c} + (h^{U})_{ij}\tilde{Q}_{i}H_{u}\tilde{u}_{R_{j}}^{c} + \mu H_{d}H_{u}$$
$$+\underbrace{\lambda_{ijk}\tilde{L}_{i}\tilde{L}_{j}\tilde{e}_{R_{k}}^{c} + \lambda_{ijk}'\tilde{L}_{i}\tilde{Q}_{j}\tilde{d}_{R_{k}}^{c}}_{\Delta L\neq 0} +\underbrace{\lambda_{ijk}''\tilde{L}_{i}\tilde{Q}_{j}\tilde{d}_{R_{k}}^{c}}_{\Delta B\neq 0} +\underbrace{\lambda_{ijk}'\tilde{L}_{i}\tilde{L}_{j}H_{u}}_{\Delta L\neq 0}.$$

The lepton/baryon number violating terms, which lead to proton decay, can be suppressed by discrete symmetries like R-Parity.

Leading order

$$\mathcal{L}_{\lambda'} = \lambda'_{ijk} (\overline{d}_{R_k} d_{L_i} \tilde{\nu}_{L_i} - \overline{d}_{R_k} u_{L_i} \tilde{l}_{L_i}) + h.c. + \cdots$$

allows resonant single slepton production at hadron colliders. (e.g. *Tevatron* or *LHC*)

$$\Rightarrow \sigma_{LO} = rac{\lambda'^2 \pi}{12s} \delta(1- au) \quad ext{with} \quad au = rac{M^2}{s}$$

3

Virtual corrections

 \rightarrow Renormalization scale μ_r and SUSY parameters are introduced.

Real processes

 \rightarrow Factorization scale μ_f appears in the partonic cross section.

Resonant single slepton production Hadronic cross section

Hadronic cross section $(d\overline{d} \rightarrow \tilde{\nu}^*; \lambda' = 0.01; \mu_{r,f} = m_{\tilde{\nu}})$

Resonant single slepton production Hadronic cross section

K-Factor $(d\overline{d} \rightarrow \tilde{\nu}^*; \lambda' = 0.01; \mu_{r,f} = m_{\tilde{\nu}})$

Resonant single slepton production

Hadronic cross section

Scale dependence $(d\overline{d} \rightarrow \tilde{\nu}^*; \lambda' = 0.01)$

Transverse momentum spectrum

- Low p_T region is correctly described by $\frac{d\sigma}{dp_T}$ (resum).
- For higher p_T non singular terms get important, described by $\frac{d\sigma}{dp_T}(pert) \frac{d\sigma}{dp_T}(asym)$.

$$\frac{d\sigma}{dp_{T}}(\textit{total}) = \frac{d\sigma}{dp_{T}}(\textit{resum}) + \left[\frac{d\sigma}{dp_{T}}(\textit{pert}) - \frac{d\sigma}{dp_{T}}(\textit{asym})\right]$$

Transverse momentum spectrum

p_T -spectrum $(d\overline{d} \rightarrow \tilde{\nu}, \lambda' = 0.01)$

Slepton decay

Slepton decay

$$ilde{\ell}^*
ightarrow ilde{\chi}_1^{\mathsf{0}} + \ell^+$$

R-parity violation leads to $\tilde{\chi}_1^0$ decays:

 ${\widetilde \chi}_1^0
ightarrow \ell^+ + {\bf q} + \overline{{\bf q}}$

The decays with two like sign leptons have low SM background.

Slepton decay

Events: $\tilde{\ell}^* \rightarrow 2\ell^+ + 2jets$ at Tevatron with $1fb^{-1} (\lambda' = 0.01)$

scenario	Ĩ	$\sigma(u\overline{d} \rightarrow \tilde{\ell}^*)$	$BR(\tilde{\ell}* \rightarrow \tilde{\chi}_1^0 \ell^+)$	$BR(\tilde{\chi}_1^0 \rightarrow \ell^+ d\overline{u})$	events
SPS1a	$\tilde{e}_L, \tilde{\mu}_L$	165 <i>fb</i>	54,4%	15,8%	14,2
	$\tilde{ au}_2$	145 <i>fb</i>	57,5%	24,6%	20,4
	$\tilde{\tau}_1$	47,8 <i>fb</i>	99,9%	24,6%	11,8
SPS3	$\tilde{e}_L, \tilde{\mu}_L$	45,3 <i>fb</i>	98,9%	20,4%	9,2
	$\tilde{ au}_2$	43,1 <i>fb</i>	88,0%	34,5%	13
	$\tilde{\tau}_1$	8,05 <i>fb</i>	99,9%	34,5%	2,8
SPS5	$\tilde{e}_L, \tilde{\mu}_L$	70,8 <i>fb</i>	60,8%	19,9%	8,6
	$\tilde{\tau}_2$	65,9 <i>fb</i>	64,1%	23,6%	10
	$ ilde{ au}_1$	12,4 <i>fb</i>	99,9%	23,6%	3

 \Rightarrow bound: $\lambda'_{i11} < 0.002 - 0.003$ for these scenarios.

Slepton decay

Events: $\tilde{\ell}^* \rightarrow 2\ell^+ + 2jets$ at LHC with $100fb^{-1}$ ($\lambda' = 0.01$)

scenario	$\tilde{\ell}^*$	$\sigma(u\overline{d} \to \tilde{\ell})$	$BR(\tilde{\ell}*\!\rightarrow\!\tilde{\chi}_1^0\ell^+)$	$BR(\tilde{\chi}_1^0 \rightarrow \ell^+ d\overline{u})$	events
SPS1a	$\tilde{e}_L, \tilde{\mu}_L$	1592 <i>fb</i>	54,4%	15,8%	13636
	$ ilde{ au}_2$	1399 <i>fb</i>	57,5%	24,6%	19814
	$ ilde{ au}_1$	401 <i>fb</i>	99,9%	24,6%	9883
SPS3	$\tilde{e}_L, \tilde{\mu}_L$	538 fb	98,9%	20,4%	10880
	$ ilde{ au}_2$	514 <i>fb</i>	88,0%	34,5%	15601
	$ ilde{ au}_1$	73 fb	99,9%	34,5%	2515
SPS5	$\tilde{e}_L, \tilde{\mu}_L$	771 fb	60,8%	19,9%	9345
	$ ilde{ au}_2$	721 fb	64,1%	23,6%	10934
	$ ilde{ au}_1$	114 <i>fb</i>	99,9%	23,6%	2703

 \Rightarrow LHC can improve bounds by two orders of magnitude.

- The R-Parity violating MSSM allows resonant single slepton production at hadron colliders.
- NLO contributions from SM-QCD are important due many new processes.
- Virtual SUSY-QCD contributions have to be considered, especially near squark-resonances.
- The *p*_T-spectrum of the slepton can be calculated through resummation of divergent terms .
- Decay of the slepton in two like sign leptons give clear signal.