Gudrun Hiller Dortmund U.

NRW-Pheno, Bad Honnef, January 14, 2006

"Implications of current and future *b*-data for beyond-the-SM Physics"

CKM \rightarrow see talk by H.Boos QCD (SCET et al) \rightarrow see talks by N.Offen, S.Jäger

SM=Standard Model, NP=New Physics, EWKSB=electroweak symmetry breaking, FCNC=Flavor changing neutral currents

High energy physics

SM tests with indirect processes

no competition from large SM tree contributions

<u>FCNC</u>: sensitivity to SM, NP phases φ , flavor-breaking couplings δ

MFV = no more flavor/CP violation than in SM, i.e. in Yukawas (CKM) $U(3)^5$ symmetry only broken by "Y" spurions; RG-invariant

superpotential leads to CKM-like flavor-viol. (w. unbroken R-parity) $-\mathcal{L}_{soft} \supset \tilde{Q}^{\dagger}m_Q^2 \tilde{Q} + \tilde{U}^{\dagger}m_U^2 \tilde{U} + \tilde{D}^{\dagger}m_D^2 \tilde{D} + A_U \tilde{Q} H_U \tilde{U} + A_D \tilde{Q} H_D \tilde{D}$ squark masses (*A*-terms) : 3 × 3 hermitean (complex) matrices <u>super-CKM basis</u>: quarks=mass eigenstates, squarks not UNLESS

 $m_{Q,D,U}^2 \propto 1 \text{ and } A_{U,D} \propto Y_{U,D}$ (1)

beyond (1) \rightarrow large # of new sources of flavor/CP violation

(1) realized in GMSB, AMSB, CMSSM

beyond MFV terms in $b \rightarrow s$ motivated from GUTs from large $\nu_{\mu} - \nu_{\tau}$ oscillations \rightarrow sizeable effects in $B_s - \bar{B}_s$ -mixing hep-ph/0212180, 0212397

models of EWKSB with NP @ TeV

Fig from hep-ph/0207121

reach in indirect signals rare b, c, K, τ -decays, mixing, EDMs, g-2 depends on beyond the SM flavor/CP violation (minimal=CKM ?), large parameters e.g. tan β and theor. and exp. uncertainties

- Introduction: New Physics effects in *b*-physics \checkmark
- Searching for BSM phases in $b \rightarrow s$: "sin 2β " measurements*
- Recent and future SM tests from $b \to s\gamma$, $b \to s\ell^+\ell^-$ processes
- Flavor violation in models beyond the minimal model
 - R-parity violating effects in double radiative decays
 - light A^0 in NMSSM at large $\tan \beta$
- Outlook

*in this talk β denotes the phase of $B\bar{B}$ -mixing, i.e. $\beta_{\rm eff}$

Time-dependent CP asymmetries in $b \rightarrow s\bar{q}q$ **decays**

SM background $\mathcal{O}(\lambda^2) \sim 0.04$, # non-universal, hadronic physics

since Moriond:~ 1σ shifts in $\bar{c}c$, Φ , larger ones in K_S^3 , f_0 ; η' off by 2.3σ better agreement between Belle and BaBar

 $\Delta S = -\eta_f S_f - \sin 2\beta$

hep-ph/0505075, 0503151 hep-ph/9708305, 0310020, 0303171, 0403287

f	ΔS_{SM}^{QCDF} @ NLO	ΔS^{QCDF}_{SM} @LO	$ \Delta S_{SM}^{SU(3)+} $	S_f LP'05	C_f LP'05
ΦK^0	$0.01 \dots 0.03$	0.02	$\stackrel{<}{_\sim} 0.3$	0.47 ± 0.19	-0.09 ± 0.14
$\eta' K^0$	$0 \dots 0.02$	$-0.01 \dots 0.02$	$\stackrel{<}{_\sim} 0.15$	0.48 ± 0.09	-0.08 ± 0.07
$\pi^0 K_S$	$0.03 \dots 0.12$	$0.03 \dots 0.10$	$\stackrel{<}{_\sim} 0.2$	0.31 ± 0.26	-0.02 ± 0.13
ωK_S	$0.05 \dots 0.22$	$0.05 \dots 0.25$	_	0.63 ± 0.30	-0.44 ± 0.23

LO captures central value and uncertainty of full NLO calc. of ΔS_f

for all above modes: QCD factorization predicts $\Delta S_f > 0$, experimental shifts < 0; no significant $C_f \neq 0$

ultimately more precision needed; all exp. errors $\lesssim 0.1$ only by time of super-b-factory $_{\rm hep-ph/0503261}$

generic NP scenarios with one additional phase, use QCDF @ LO

hep-ph/0503151

input: $S_{\pi^0 K_S} = 0.34$ • and maximal NP amplitude ok with other data predict S_f for: $\mathbf{v} = \Phi$, $\mathbf{A} = \eta'$, $\mathbf{I} = \eta$, $\mathbf{x} = \omega$, $\mathbf{+} = \rho$

goal: identify type of NP from characteristic SM departure

Fit generic NP scenarios to current data

 $A = A_{SM} + A_{NP}$; $A_{NP} \propto \epsilon_i e^{i\vartheta_i}$; 3 NP scenarios sZb, KK, $sbg_{hep-ph/0503151}$ χ^2 -fit to $b \rightarrow s$ penguin data, LP'05 update

black, dark grey, light grey regions: probability > 0.32, 0.046, 0.0027 $A_{NP} >> A_{SM}$: 4-fold solution $\sin 2(\beta + \vartheta) \simeq 0.4$ (with $\cos 2\beta > 0$) NP amplitudes can be larger if no phase $\vartheta = 0, \pi$ all 3 scenarios have solution, which is more favored than SM ($\epsilon_i = 0$)

Some (further) SM tests with *b***-physics**

	experiment	SM	comments
$a_{CP}(b \to s\gamma)$	$0.4\pm3.6\%$	$0.42\pm0.17\%$ hep-ph/0312260	CPX in $bs\gamma,g$
$a_{CP}(b \rightarrow d/s\gamma)$	-0.110 ± 0.116 BaBar'05	10^{-9} hep-ph/0312260	test MFV
$S_{K_S\pi^0\gamma}$	0.00 ± 0.28 Belle/BaBar'05	$-2m_s/m_b$	V+A FCNCs
$\mathcal{B}(B \to X_s g)$	<9% CLEO'97	$5.0 \pm 1.0 \cdot 10^{-3}$	NP in <i>bsg</i>
$\mathcal{B}(B \to X_s \bar{\mu} \mu)$	$4.3 \pm 1.2 \cdot 10^{-6}$	$4.3 \pm 0.7 \cdot 10^{-6}$	q^2 -spectra
$a_{CP}(B \to X_s \bar{\ell} \ell)$	-0.22 ± 0.26	$-0.2\pm 0.2~$ %hep-ph/9812267	CPX
$A_{FB}^{CP}\!(B\!\rightarrow\!K^*\bar{\ell}\ell)$	—	$\stackrel{<}{_\sim} 10^{-3}$ hep-ph/0006136	CPX in bsZ
$R_K \; \mu \mu \; { m VS.} \; ee$	1.06 ± 0.48 BaBar'05	$1\!+\!{\cal O}(m_{\mu}^2/m_b^2)$ hep-ph/0310219	non-SM Higgs
$\mathcal{B}(B \to K \nu \bar{\nu})$	$< 3.6\cdot 10^{-5}$ Belle'05	$3.8^{+1.2}_{-0.6}\cdot 10^{-6}$	O(10) from SM
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$< 5.8 \cdot 10^{-7}$	$3.2 \pm 1.5 \cdot 10^{-9}$	O(100) from SM
$\mathcal{B}(B_s \to \tau^+ \tau^-)$	$< \mathcal{O}(5\%)$	$7.2 \pm 1.1 \cdot 10^{-7}$	$O(10^5)$ from SM
Δm_s	$> 15/\mathrm{ps}$	(15 - 22) / ps	hadron colliders

$$b \to s \gamma, b \to s \ell^+ \ell^-$$
 decays

diagrams in SM

$$\mathcal{H}_{eff} = -4\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum C_i(\mu) O_i(\mu)$$

dipole operators $O_7 \propto \bar{s}_L \sigma_{\mu\nu} b_R F^{\mu\nu}$ $O_8 \propto \bar{s}_L \sigma_{\mu\nu} b_R G^{\mu\nu}$ 4-Fermi operators $O_9 \propto (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$ $O_{10} \propto (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$ NP in Wilson coefficients $C_i = C_i^{SM} + C_i^{NP}$ or new operators model-independent analysis: Br's, $A_{CP}, A_{FB} = f(C_i) \rightarrow \text{fit } !$

Impact of $b \rightarrow s \ell^+ \ell^-$ beyond MFV, perspectives

 $\mathcal{B}(b \to s\ell^+\ell^-)$: best bound on $\bar{s}Zb$ -penguin $\sim C_{10} \lesssim 2C_{10}^{SM}$ SUSY O(1) effects in C_{10} from δ_{23}^U possible (LR and LL) hep-ph/9906286,0006136 great NP sensitivity in q^2 -spectra in $b \to s\ell^+\ell^-$; asy # forward - #backward ℓ^+ in dilepton CMS w.r.t. \bar{B} needs tagging $A_{FB}^{SM} + \bar{A}_{FB}^{SM} \simeq 0$

 $A_{FB}(\hat{s}) \sim \operatorname{Re}\left[C_{10}^*(C_7^{eff} + \beta(\hat{s})C_9^{eff})\right] \text{ also } B \to K^*\ell^+\ell^- \to \text{Belle'04}$

shape sensitive to sign C_7 ; $A_{FB} \propto C_{10}$; flat possible <u>zero</u> allows precision test $\hat{s}_{SM}^{NNLL} = 0.162 \pm 0.002(8)$ hep-ph/0208088,0209006

NP in $bs\gamma + \gamma$ tightly constrained by $\mathcal{B}(B \to X_s \gamma)$, but 1PI has room

impact of 4-Fermi's higher order in $b \to s\gamma$, lepton-loop down by α_{em} $b \to s\tau^+\tau^-$ essentially unconstrained $\mathcal{B}(B_s \to \tau^+\tau^-) < 5\%$ hep-ph/0411344 R-parity viol.: biggest contribution from $\tilde{\nu}_{\mu}$ through $\lambda'_{232}\lambda_{233}$ hep-ph/0404152

 $\begin{array}{ll} \mathsf{RPV:} \ Br/Br_{SM}(B_s \to \gamma \gamma) \lesssim 16 & Br/Br_{SM}(B \to X_s \gamma \gamma) \lesssim 5 \\ \mathsf{model-independently:} \ Br/Br_{SM}(B \to K \gamma \gamma) \lesssim O(10) \ {}_{\mathsf{hep-ph/0411344}} \\ \mathcal{B}^{L3}(B_s \to \gamma \gamma) < 1.48 \cdot 10^{-4} \simeq 10^2 \cdot \mathcal{B}_{SM}(B_s \to \gamma \gamma) \end{array}$

Light CP-odd *A*⁰**: implications for hadron colliders**

<u>direct searches</u>: $h^0 \rightarrow A^0 A^0$ open if $2m_{A^0} < m_{h^0}$

can be VERY important for $\mathcal{O}(1)$ $h^0 A^0 A^0$ -coupling C hep-ph/0005308

decay modes: $A^0 \to b\bar{b}, \tau\tau, 3\pi$ or higher hadronic, $\mu\mu, ee, \gamma\gamma$ if A^0 very light and weakly coupled, it becomes missing energy Υ -decays, beam dump, astro physics $m_{A^0} \gtrsim \mathcal{O}(100 \text{MeV})$ ok

NMSSM constraints from indirect signals

 $W = QY_uH_uU + QY_dH_dD + LY_eH_dE + \lambda H_dH_uN - \frac{1}{3}kN^3$ N:singlet at large tan β : naturally light A_1^0 , rad. stable $b \to sA_1^0$ transitions

bounds from $B \to KA_1^0, K \to \pi A_1^0$, $\Upsilon(1s) \to \gamma A_1^0$ decays

 A_1^0 masses as low as $\mathcal{O}(10 {\rm MeV})$ viable ${\rm \tiny hep-ph/0404220}$

Light CP-odd *A*⁰**: further tests from** *b***-physics**

- improve bounds from radiative Υ -decays or $B \to K + \text{missing E}$
- for $m_{\psi'} < m_{A_1^0} \lesssim m_B$: search for A_1^0 in $b \to s\tau^+\tau^-$ processes sensitivity e.g. $\mathcal{B}(B \to X_s\tau^+\tau^-) \sim 10^{-3}$
- $B_s \bar{B}_s$ mixing and $B_s \rightarrow \mu^+ \mu^-$ CDF: $\mathcal{B}(B_s \xrightarrow{b} \mu^+ \mu^-) < 5.8 \cdot 10^{-7}$ in MSSM correlated Fig adopted from hep-ph/0207241 in NMSSM: SM-like Δm_s (A_1^0 contribution constrained by Δm_d), but not correlated with $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-)$ hep-ph/0404220

- indirect (loop) processes are unique probes of CP/flavor sector
- flavor experiments distinguish MFV vs. non-MFV; very different model-building; sensitivity to very high scales $\Lambda_{SUSY} \gg \Lambda_{EWK}$
- goal: measure ALL (flavor diagonal \rightarrow direct searches and flavor breaking \rightarrow FCNC) couplings/parameters precisely
- CKM becomes input $\rightarrow fits$

CKM anno 1995: ϵ_K , Δm_d , $|V_{ub}/V_{cb}|$, $|V_{cb}|$, λ hep-ph/9508272

- so far agreement with SM/CKM, $\sin 2\beta$ moved closer to MFV some hints $(\eta' K^0) \rightarrow$ higher precision
- many FCNCs only weakly or just un-constrained $..\Delta m_s, \tau^{\pm},...$
- $b \rightarrow s\ell\ell$ modes under th and exp investigation Belle/BaBar
- $b \rightarrow d$ FCNCs beginning to be probed
- B_s -physics coming up (Tevatron) !
- study correlations & pattern rather than individual observables
- much more information on flavor physics from the LHC