Higher orders in $B \rightarrow \pi \pi$ in QCD factorization and SCET

Sebastian Jäger

Institut für Theoretische Physik E, RWTH Aachen

in collaboration with Martin Beneke

NRW pheno meeting, 14 January 2006

hep-ph/0512351, hep-ph/0512101

$B \rightarrow \pi \pi$ amplitudes

Model-independent parameterization (assuming isospin, neglecting EW penguins): $\sqrt{2} A(P^{-1} + \pi^{-}\pi^{0}) = e^{-i\gamma}(\hat{T} + \hat{C})$

$$\sqrt{2}\mathcal{A}(B^{-} \to \pi^{-}\pi^{0}) = e^{-i\gamma}(T+C)$$
$$\mathcal{A}(\bar{B}^{0} \to \pi^{+}\pi^{-}) = e^{-i\gamma}\hat{T} - \hat{P}$$
$$\sqrt{2}\mathcal{A}(\bar{B}^{0} \to \pi^{0}\pi^{0}) = e^{-i\gamma}\hat{C} + \hat{P}$$

 $\hat{T}, \hat{C}, \hat{P}$: physical, including two strong phases.

- $C_i(\mu)$ contains effects of hard gluons $(k^2 > \mu^2 \sim m_b^2)$ and heavy particles (W, Z, t, new physics) find from expanding Feynman diagrams in p/M_W (external momentum/heavy mass)
- $\ \, \checkmark \ \, = \ \, \langle \pi \pi | \mathcal{O}_i(\mu) | \bar{B} \rangle \text{ contain all dynamics below the scale } \mu$

QCD corrections: Scales m_b and below

b-quark and spectator in *B*-meson are soft, quarks representing energetic light mesons collinear:

$$p_{b} = m_{b}(n_{+} + n_{-})/2 + \mathcal{O}(\Lambda_{\text{QCD}}), \qquad n_{+}^{2} = n_{-}^{2} = 0$$

$$p_{q_{s}} = \mathcal{O}(\Lambda_{\text{QCD}})$$

$$p_{q_{1,2}} = {}^{(-)}u m_{b}n_{+}/2 + \mathcal{O}(\Lambda_{\text{QCD}}), \qquad u + \bar{u} = 1$$

$$p_{q_{3,4}} = {}^{(-)}v m_{b}n_{-}/2 + \mathcal{O}(\Lambda_{\text{QCD}}), \qquad v + \bar{v} = 1$$

• Can form invariants $p_b \cdot p_{q_i} \sim m_b^2$, $p_{q_s} \cdot p_{q_4} \sim \Lambda m_b \equiv \lambda^2$, suggests expanding amplitudes in λ/m_b

Factorization formula for hadronic *B*-decays

 T^{I} , T^{II} : process dependence and strong phases

Soft-collinear effective theory

Transition between the scales by RGE - resums large logarithms

QCD factorization in SCET $_{\rm I}$

To match diagrams without/with spectator interactions, need

$$O^{\mathrm{I}} = \left(\bar{\chi}(tn_{-})\frac{\not{n}_{-}}{2}\gamma_{5}\chi(0)\right)\underbrace{\left(\bar{\xi}(sn_{+})\not{n}_{+}h_{v}(0)\right)}_{\left(\bar{\xi}(sn_{+})\not{n}_{+}h_{v}(0)\right)} \equiv Q(t)J^{A}(s)$$

$$O^{\mathrm{II}} = \frac{1}{m_{b}}\left(\bar{\chi}(tn_{-})\frac{\not{n}_{-}}{2}\gamma_{5}\chi(0)\right)\underbrace{\left(\bar{\xi}(s_{1}n_{+})\not{n}_{+}i\not{D}_{\perp c}(s_{2}n_{+})h_{v}(0)\right)}_{\mathsf{B-type current}} \equiv Q(t)J^{B}(s_{1},s_{2})$$

- M_−ξ = M₊χ = 0 ((hard-)collinear quarks). $iD_{\perp c} = i\partial_{\perp} + gA_{\perp c}$ (transverse (hard-)collinear gluon). h_v HQET heavy quark field
- Nonlocal along n_+ , n_-
- amplitudes factorize up to $\mathcal{O}(1/m_b)$ (not $1/\sqrt{\Lambda m_b}$) corrections
- ▶ $[F.T.\langle \pi | Q(t) | 0 \rangle](u) = \phi_{\pi}(u)$ defines π light-cone distribution amplitude

QCD factorization in $SCET_{I}$ (2)

$$\mathcal{O}_i \to \mathcal{H}_{\mathrm{SCET}_{\mathrm{I}}} = \int du \, C^{\mathrm{I}}(u) Q(u) J_A + \int du \, dv' C^{\mathrm{II}}(u, v') Q(u) J_B(v')$$

This suggests (cf Bauer, Pirjol, Rothstein, Stewart 2004)

$$\langle \pi \pi | \mathcal{O}_i | \bar{B} \rangle = C^{\mathrm{I}} * \phi_{\pi} \underbrace{\langle \pi | J_A | \bar{B} \rangle}_{\xi_{\pi}} + C^{\mathrm{II}} * \phi_{\pi} * \underbrace{\langle \pi | J_B(v') | \bar{B} \rangle}_{\Xi(v')}$$

but $F^{B \to \pi} = C_A \xi_{\pi} + C_B * \underbrace{\Xi(v')}_{\text{same as above}}$ Beneke,Feldmann 2000,2003

redefine $Q(u)J_A \longrightarrow Q(u)(C_AJ_A + C_B * J_B)$, $C^{\mathrm{I}} \to T^{\mathrm{I}}$, $C^{\mathrm{II}} \to H^{\mathrm{II}}$

$$T^{\mathrm{II}} = H^{\mathrm{II}} * J$$

Second matching step onto $SCET_{II}$ is identical to form factor case

Jet function known to $\mathcal{O}(\alpha_s^2)$

Hill, Becher, Lee, Neubert 2004; Beneke, Yang 2005; Kirillin 2005

Matching onto SCET_I- current-current diagrams

Partonic QCD amplitude $\stackrel{!}{=}$ partonic matrix element

 $\langle \bar{q}qqg | \mathcal{O}_{1,2}^{u} | b \rangle_{\text{QCD}} = T^{\text{I}} * \langle \bar{q}q | Q(u) | 0 \rangle \langle qg | J | b \rangle + H^{\text{II}} * \langle \bar{q}q | Q(u) | 0 \rangle * \langle qg | J_B(v') | b \rangle$

- (IR) divergence structure restricted on the r.h.s, but (a priori) not on l.h.s.
- LHS: compute about 50 diagrams in QCD, with dimensional regularization, as function of large momentum components
- RHS: compute one-loop matrix elements, main issue: evanescent operators
 - $D_2 = \frac{\#}{2} \gamma^{\alpha \perp} \otimes \frac{\#}{2} \gamma_{\mu \perp} \gamma_{\alpha \perp}$ vanishes in d = 4, but appears at tree level
 - must ensure (by finite renormalization) that $\langle D_2 \rangle^{(1-\text{loop})} = 0$
- **•** read off $H^{II(1)}$ from equation

Analytical results

$$\begin{split} H^{\Pi(1)} &\propto r_{1,2} \\ r_1 &= C_F \bigg[-\frac{1}{2\bar{u}} \ln^2 \frac{m_b^2}{\mu^2} + \left(6 - \frac{5}{2\bar{u}} + \frac{2}{\bar{u}} \ln \bar{u} \right) \ln \frac{m_b^2}{\mu^2} + \frac{u}{\bar{u}} \left[V(u) + 18 \right] \\ &\quad - \frac{2u}{\bar{u}} F(v, u) + \frac{2u^3}{(\bar{v} - u)^3} F(v, \bar{u}) - \frac{2}{\bar{u}} \Big(\ln \bar{u} + \ln \bar{v} \big) i\pi - \frac{1}{\bar{u}} \Big(9 + \frac{5}{12} \pi^2 \Big) \\ &\quad + \Big(\frac{u}{\bar{v} - u} - \frac{2u^2}{(\bar{v} - u)^2} - \frac{2(3u - 2)}{\bar{u}} \Big) \Big[\log u - i\pi \Big] - \frac{2(1 - uv)}{u\bar{u}v\bar{v}} \ln(1 - uv) \\ &\quad - \Big(\frac{u(2 - 4u + u^2)}{\bar{u}^2(\bar{v} - u)} - \frac{2(2 - u)u^2}{\bar{u}(\bar{v} - u)^2} + \frac{\bar{u} - v + 4u\bar{u}v}{u\bar{u}^2v^2} \Big) \ln(1 - \bar{u}v) \\ &\quad + \frac{1}{\bar{u}} (\ln^2 \bar{u} - \ln^2 \bar{v}) + \Big(\frac{u}{\bar{v} - u} - \frac{2u^2}{(\bar{v} - u)^2} + \frac{\bar{v} + 3uv^2}{uv^2} \Big) \ln \bar{v} \\ &\quad + \Big(3 + \frac{2}{\bar{u}\bar{v}} - 2\ln v + \Big(2 + \frac{2}{\bar{u}} \Big) \ln \bar{v} \Big) \ln \bar{u} + \Big(3 + \frac{2}{\bar{u}} \ln \bar{v} \Big) \ln v \\ &\quad + \Big(\frac{1 - 3u\bar{u}}{\bar{u}^2} + \frac{2(3u - 2)}{\bar{u}} + 2\ln v + \frac{2u}{\bar{u}} \ln \bar{v} \Big) \ln u + \frac{2}{\bar{u}} Li_2(\bar{v}) \Big] \\ &\quad + \Big(C_F - \frac{C_A}{2} \Big) \Big[-\frac{2}{\bar{u}\bar{v}} \ln v \ln \frac{m_b^2}{\mu^2} + \frac{1}{\bar{u}} V(u) + \frac{2u}{v - u} F(v, u) + \frac{2u^2}{(\bar{v} - u)^2} F(v, \bar{u}) \\ &\quad + 2i\pi \Big(\frac{\bar{v}}{\bar{v} - u} + \frac{u}{\bar{u}} \ln \frac{u}{\bar{u}} + \frac{v}{\bar{u}\bar{v}} \ln v + \frac{1}{\bar{u}} \ln \bar{v} \Big) + \frac{1}{\bar{u}} \Big[\ln^2 \bar{v} + \frac{\pi^2}{3} \Big] + \frac{u}{\bar{u}} (\ln^2 u - \ln^2 \bar{u}) \\ &\quad - \frac{1 + \bar{v}}{\bar{u}\bar{v}} \ln^2 v + \Big(\frac{2 - 3u}{u\bar{u}} + \frac{2}{u\bar{v}\bar{v}} \Big) \ln \bar{u} - \frac{2(1 - uv)}{u\bar{u}\bar{v}\bar{v}} \ln (1 - uv) \\ &\quad + \Big(\frac{2(1 - 3u^2 + u^3)}{u\bar{u}\bar{v}} + \frac{2(1 - \bar{v}^2\bar{u})}{\bar{u}\bar{v}\bar{v}} + \frac{2(2 - u)}{u\bar{v}\bar{v}\bar{v}} \ln (1 - uv) \\ &\quad + \Big(\frac{(1 + 2u\bar{u}}{\bar{u}\bar{u}} - \frac{2(1 - uv)}{\bar{u}\bar{v}\bar{v}} + \frac{2(u\bar{u}\bar{u} - v)}{u\bar{v}(\bar{v} - u)} \Big) \ln (1 - \bar{u}v) \\ &\quad + \Big(\frac{(1 + 2u\bar{u}}{\bar{u}\bar{v}} + \frac{2}{\bar{u}} \ln u - \frac{2}{\bar{u}\bar{v}} \ln \bar{u} \Big) \ln v \\ &\quad - \Big(\frac{2 - 5u - 4u^2 + 2u^3}{\bar{u}\bar{v}\bar{v}} + \frac{2(u\bar{u}\bar{u}-v)}{\bar{u}\bar{v}\bar{v}} + \frac{2u\bar{u}}{v(\bar{v} - u)} + \frac{2u}{\bar{u}} \ln u \\ &\quad + 2\ln \bar{u} + \frac{2(1 - 2u)}{u\bar{u}\bar{v}} \ln v \Big) \ln \bar{v} \\ &\quad + 2 \Big\{ - \frac{1 + 2u\bar{v}}{\bar{u}\bar{v}} Li_2(u) + \frac{1 - u\bar{v} + 2u\bar{v}\bar{v}}{u\bar{u}\bar{v}\bar{v}} Li_2(\bar{u}) + \frac{1 + u\bar{v}}{\bar{u}\bar{v}} Li_2(uv) \Big\}$$

$$\begin{aligned} &-\frac{1-u\bar{u}\bar{v}}{u\bar{u}\bar{v}}\operatorname{Li}_{2}(\bar{u}v) - \frac{1-2u+u\bar{v}}{u\bar{u}\bar{v}}\operatorname{Li}_{2}(\bar{v})\Big\}\Big],\\ r_{2} &= \frac{1}{2\bar{u}}\left[V(u)+2\right] + \frac{u\bar{v}}{\bar{u}(v-u)}F(v,u) + \frac{u^{2}\bar{v}}{(\bar{v}-u)^{3}}F(v,\bar{u}) + \frac{\bar{v}(\bar{v}-3u)}{2(\bar{v}-u)^{2}}\left[\ln\bar{v}-i\pi\right] \\ &+ \left(\frac{1+u^{2}}{2\bar{u}^{2}} + \frac{u}{2\bar{u}^{2}}\bar{v} - \frac{u^{2}}{(\bar{v}-u)^{2}} - \frac{u}{2(\bar{v}-u)}\right)\ln u + \frac{\bar{u}+\bar{v}}{u\bar{u}\bar{v}}\ln\bar{u} \\ &+ \left(\frac{3}{2\bar{u}} - \frac{1}{2\bar{u}\bar{v}} + \frac{\ln u}{\bar{u}} - \frac{\ln\bar{u}}{\bar{u}}\right)\ln v - \left(\frac{1}{u\bar{u}v} + \frac{1}{u\bar{v}}\right)\ln(1-uv) \\ &+ \left(-\frac{1}{2} - \frac{u}{2\bar{u}^{2}\bar{v}} + \frac{u^{2}(\bar{u}^{2}+v)}{\bar{u}^{2}(\bar{v}-u)^{2}} + \frac{u(2+u^{2})}{2\bar{u}^{2}(\bar{v}-u)}\right)\ln(1-\bar{u}v),\end{aligned}$$

where

$$\begin{split} F(v,w) &= 2\operatorname{Li}_2\left(-\frac{\bar{v}w}{\bar{w}}\right) + 2\operatorname{Li}_2(w) - \operatorname{Li}_2(vw) + \frac{1}{2}\ln^2\frac{\bar{w}}{\bar{v}} + i\pi\ln\frac{\bar{w}}{\bar{v}},\\ V(u) &= 6\ln\frac{m_b^2}{\mu^2} - 18 + 3\left(\frac{1-2u}{\bar{u}}\ln u - i\pi\right) \\ &+ \left\{2\operatorname{Li}_2(u) - \ln^2 u + \frac{2\ln u}{\bar{u}} - (3+2i\pi)\ln u - (u\leftrightarrow\bar{u})\right\} \end{split}$$

Tree amplitudes in QCDF/SCET

- Two ways to insert $\mathcal{O}_1^u, \mathcal{O}_2^u: O^{\mathrm{II}} \to O_1^{\mathrm{II}}$, O_2^{II}
- Their matrix elements (convolutions) define two "topological" amplitudes α_1, α_2 , the generalizations of the color-allowed and color-suppressed tree amplitudes.

$$\begin{split} \sqrt{2}\mathcal{A}(B^- \to \pi^- \pi^0) &= V_{ub}V_{ud}^*A_{\pi\pi}(\alpha_1 + \alpha_2) + \text{annihilation} \\ \mathcal{A}(\bar{B}^0 \to \pi^+ \pi^-) &= V_{ub}V_{ud}^*A_{\pi\pi}\alpha_1 + \text{QCD penguins} + \text{annihilation} \\ -\mathcal{A}(\bar{B}^0 \to \pi^0 \pi^0) &= V_{ub}V_{ud}^*A_{\pi\pi}\alpha_2 + \text{QCD penguins} + \text{annihilation} \end{split}$$

$$A_{\pi\pi} = i \frac{G_F}{\sqrt{2}} m_B^2 f_{\pi} f_{+}^{B\pi}(0)$$

 $\alpha_1 = C_1 + 1/N_c C_2 + \mathcal{O}(\alpha_s)C_2 + \mathcal{O}(\alpha_s^2)C_1 + \dots \qquad \text{color-allowed tree}$ $\alpha_2 = C_2 + 1/N_c C_1 + \mathcal{O}(\alpha_s)C_1 + \mathcal{O}(\alpha_s^2)C_1 + \dots \qquad \text{color-suppressed tree}$

Choice of parameters

Parameter	Value/Range	Parameter	Value/Range
$\Lambda^{\overline{\mathrm{MS}}(5)}$	0.225	μ_b	$4.8^{+4.8}_{-2.4}$
m_c	1.3 ± 0.2	$\mu_{ m hc}$	1.5 ± 0.6
m_s (2 GeV)	0.09 ± 0.02	f_{B_d}	0.20 ± 0.03
m_b	4.8	$f_+^{B\pi}(0)$	0.28 ± 0.05
$ar{m}_b(ar{m}_b)$	4.2	λ_B (1 GeV)	0.35 ± 0.15
$ V_{cb} $	0.0415 ± 0.0010	σ_1 (1 GeV)	1.5 ± 1
$\left V_{ub}/V_{cb} ight $	0.09 ± 0.02	σ_2 (1 GeV)	3 ± 2
γ	$(70\pm20)^{\circ}$	a_2^{π} (2 GeV)	0.1 ± 0.2

- μ_b, μ_{hc} are the hard and hard-collinear factorization (renormalization) scales

- Closeness of LO, NLO, NNLO validates perturbative approach
- For NNLO, errors combined in quadrature; dominant: hard-collinear factorization scale, power corrections

Vary all input parameters and the two factorization scales

Sensitivity to λ_B

Sensitivity to λ_B combines almost linearly with Gegenbauer moment one!

"G" shows result of two-parameter fit of $f_+(0)\lambda_B$ and a_2^{π} (fit to branching ratios).

Numerical results

$$\alpha_1(\pi\pi) = 0.992^{+0.029}_{-0.054} + (-0.007^{+0.018}_{-0.035})i$$

$$\alpha_2(\pi\pi) = 0.205^{+0.171}_{-0.110} + (-0.043^{+0.083}_{-0.065})i$$

- no large complex phases
- some enhancement of color-suppressed tree possible

For BRs, use fit values for $f_+(0), \lambda_B, a_2^{\pi}$ (parameter set "G" \approx S4)

$$10^{6} \operatorname{Br}(B^{-} \to \pi^{-} \pi^{0}) = 5.5^{+0.3}_{-0.3}(\operatorname{CKM})^{+0.5}_{-0.4}(\operatorname{hadr.})^{+0.9}_{-0.8}(\operatorname{pow.}) \qquad [\operatorname{Exp:} 5.5 \pm 0.6]$$

$$10^{6} \operatorname{Br}(\bar{B}^{0} \to \pi^{+} \pi^{-}) = 5.0^{+0.8}_{-0.9}(\operatorname{CKM})^{+0.3}_{-0.5}(\operatorname{hadr.})^{+1.0}_{-0.5}(\operatorname{pow.}) \qquad [\operatorname{Exp:} 5.0 \pm 0.4]$$

$$10^{6} \operatorname{Br}(\bar{B}^{0} \to \pi^{0} \pi^{0}) = 0.73^{+0.27}_{-0.24}(\operatorname{CKM})^{+0.52}_{-0.21}(\operatorname{hadr.})^{+0.35}_{-0.25}(\operatorname{pow.}) \qquad [\operatorname{Exp:} 1.45 \pm 0.29]$$

- CKM "error" may be interpreted as sensitivity
- Dominant "hadronic" error: hard-collinear factorization scale μ_{hc}

Conclusion and outlook

- First part of NNLO contributions to the QCD factorization formula available. This also constitutes a partial proof of factorization at NNLO.
- Perturbation expansion well behaved also at the hard-collinear scale, scale uncertainties are moderate
- Enhancement of the color-suppressed tree, also with respect to the color-allowed tree, due to 1-loop hard spectator scattering
- Branching fractions, and particularly ratios (and double ratio) in better agreement with experiment. Better determinations of hadronic parameters ($F^{B \rightarrow \pi}, a_2^{\pi}, \lambda_B$) desirable
- Penguin contributions important for CP asymmetries and many branching fractions, but not yet available at NNLO
- Full NNLO formula also requires two-loop vertex corrections.