

Michael Krämer

(RWTH Aachen)

- Basics of SUSY particle production at hadron colliders
- The calculation of SUSY-QCD corrections

Work done in collaboration with W. Beenakker, R. Höpker, M. Klasen, T. Plehn, M. Spira, P.M. Zerwas

- There are many good reasons to study supersymmetric field theories and TeV-scale SUSY at colliders:
 - SUSY is the unique extension of the Lorentz-symmetry
 - SUSY provides a solution to the hierarchy problem
 - SUSY allows for gauge coupling unification
 - SUSY provides a dark matter candidate
 - SUSY can generate EWSB dynamically

The MSSM particle spectrum

Gauge Bosons $S=1$	Gauginos $S = 1/2$	
gluon, W^{\pm}, Z, γ	gluino, $\widetilde{W}, \widetilde{Z}, \widetilde{\gamma}$	
Fermions $S = 1/2$	Sfermions $S = 0$	
${u_L \choose d_L} { u_L \choose e_L}$	$\binom{\widetilde{u}_L}{\widetilde{d}_L}\binom{\widetilde{\nu}_L^e}{\widetilde{e}_L}$	
u_R, d_R, e_R	$\widetilde{u}_R, d_R, \widetilde{e}_R$	
Higgs	Higgsinos	
$\binom{H_2^0}{H_2^-}\binom{H_1^+}{H_1^0}$	$\binom{\widetilde{H}_2^0}{\widetilde{H}_2^-}\binom{\widetilde{H}_1^+}{\widetilde{H}_1^0}$	

In the MSSM one imposes a symmetry

to avoid proton decay

$$R = (-1)^{3B+L+2S} \begin{cases} = +1 \text{ SM} \\ = -1 \text{ SUSY} \end{cases}$$

- \rightarrow SUSY particles produced pairwise
- \rightarrow lightest SUSY particle stable (dark matter candidate)

In the MSSM one imposes a symmetry

to avoid proton decay

$$R = (-1)^{3B+L+2S} \begin{cases} = +1 \text{ SM} \\ = -1 \text{ SUSY} \end{cases}$$

- \rightarrow SUSY particles produced pairwise
- \rightarrow lightest SUSY particle stable (dark matter candidate)
- The interactions of MSSM particles are determined by gauge symmetry and SUSY

In the MSSM one imposes a symmetry

to avoid proton decay

$$R = (-1)^{3B+L+2S} \begin{cases} = +1 \text{ SM} \\ = -1 \text{ SUSY} \end{cases}$$

- \rightarrow SUSY particles produced pairwise
- \rightarrow lightest SUSY particle stable (dark matter candidate)
- The interactions of MSSM particles are determined by gauge symmetry and SUSY

SUSY particles should be produced copiously at hadron colliders through QCD processes, e.g.

Squark and gluino cross section at the LHC

Squark and gluino cross section at the LHC

Distinctive signature due to cascade decays:

multiple jets (and/or leptons) with large amount of missing energy

Distinctive signature due to cascade decays:

multiple jets (and/or leptons) with large amount of missing energy

 \rightarrow LHC discovery reach for squarks and gluinos: $M_{\tilde{q},\tilde{g}} \lesssim 2.5~{\rm TeV}$

mass limits (roughly)

$M_{ ilde{ extbf{g}}}$	\gtrsim	200 GeV
$M_{\tilde{\mathbf{q}}} \approx M_{\mathrm{gluino}}$	\gtrsim	300 GeV
$M_{ ilde{{f t}}_1}$	\gtrsim	100 GeV
$M_{ ilde{\chi}_1^0}$	\gtrsim	50 GeV
$M_{\tilde{\chi}_1^{\pm}}$	\gtrsim	100 GeV
$M_{\rm sleptons}$	\gtrsim	100 GeV

production dynamics

$$\begin{split} \sigma(pp/p\bar{p} \to \tilde{q}\bar{\tilde{q}}) \; = \; \int \mathrm{d}x_1 f_i^P(x_1,\mu) \int \mathrm{d}x_2 f_j^P(x_2,\mu) \; \sigma(ij \to \tilde{q}\bar{\tilde{q}}) \\ & + \mathcal{O}(\Lambda/M_{\tilde{q}}) \end{split}$$

 \rightarrow effective energy for (s)particle production $\sqrt{\hat{s}}=\sqrt{x_1x_2s}<\sqrt{s}$

Michael Krämer

Scale dependence

$$\sigma = \int dx_1 f_i^P(x_1, \mu_F) \int dx_2 f_j^P(x_2, \mu_F)$$
$$\times \sum_n \alpha_s^n(\mu_R) C_n(\mu_R, \mu_F)$$

finite order in perturbation theory

 \rightarrow artificial μ -dependence:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\ln\mu_{\mathrm{R}}^{2}} = \sum_{n=0}^{N} \alpha_{s}^{n}(\mu_{R}) C_{n}(\mu_{R},\mu_{F})$$
$$= \mathcal{O}(\alpha_{s}(\mu_{R})^{N+1})$$

 \Rightarrow scale dependence \sim theoretical uncertainty due to HO corrections

Scale dependence

$$\sigma = \int dx_1 f_i^P(x_1, \mu_F) \int dx_2 f_j^P(x_2, \mu_F)$$
$$\times \sum_n \alpha_s^n(\mu_R) C_n(\mu_R, \mu_F)$$

finite order in perturbation theory

 \rightarrow artificial μ -dependence:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\ln\mu_{\mathrm{R}}^{2}} = \sum_{n=0}^{N} \alpha_{s}^{n}(\mu_{R}) C_{n}(\mu_{R},\mu_{F})$$
$$= \mathcal{O}(\alpha_{s}(\mu_{R})^{N+1})$$

 \Rightarrow scale dependence \sim theoretical uncertainty due to HO corrections

Example: Stop-pair production at leading order

 \rightarrow theoretical uncertainty $\gtrsim~\pm~100\%$ at LO

 \Rightarrow must include NLO corrections

MSSM sparticle pair production

- $\begin{array}{ll} \text{ squarks \& gluinos} & pp/p\bar{p} \to \widetilde{q}\overline{\widetilde{q}}, \widetilde{g}\widetilde{g}, \widetilde{q}\widetilde{g} \\ \text{ stops} & pp/p\bar{p} \to \widetilde{t}\overline{\widetilde{t}} \end{array}$
- $\text{ gauginos} \qquad pp/p\bar{p} \to \tilde{\chi}^0 \tilde{\chi}^0, \tilde{\chi}^\pm \tilde{\chi}^0, \tilde{\chi}^+ \tilde{\chi}^-$
- sleptons $pp/p\bar{p} \rightarrow \tilde{l}\tilde{l}$
- associated production $pp/p\bar{p} \rightarrow \tilde{q}\tilde{\chi}, \tilde{g}\tilde{\chi}$

• \tilde{t}_L, \tilde{t}_R mix to form mass states $\tilde{t}_1, \tilde{t}_2 \rightarrow$ potentially small \tilde{t}_1 mass

Top-squark production

 $\mathfrak{I}_{L}, \widetilde{t}_{R}$ mix to form mass states $\widetilde{t}_{1}, \widetilde{t}_{2} \rightarrow$ potentially small \widetilde{t}_{1} mass

LO parton reations

Top-squark production

- $\mathfrak{I}_{L}, \widetilde{t}_{R}$ mix to form mass states $\widetilde{t}_{1}, \widetilde{t}_{2} \rightarrow$ potentially small \widetilde{t}_{1} mass
- LO parton reations

Page 11

Top-squark production

- $\mathfrak{I}_L, \widetilde{t}_R$ mix to form mass states $\widetilde{t}_1, \widetilde{t}_2 \rightarrow \mathsf{potentially small} \ \widetilde{t}_1$ mass
- LO parton reations

$$\hat{\sigma}_{\rm LO}[q\bar{q}] = \frac{\alpha_s^2 \pi}{s} \frac{2}{27} \beta^3 \quad (\beta^2 = 1 - 4m^2/s) \qquad \left(\begin{array}{c} \text{c.f. top production:} \quad \hat{\sigma}_{\rm LO}[q\bar{q}] \approx \frac{\alpha_s^2 \pi}{s} \frac{12}{27} \beta \\ \rightarrow \sigma^{\rm top}/\sigma^{\rm stop} \sim 10 \quad \text{at the Tevatron} \end{array} \right)$$

$$\hat{\sigma}_{\rm LO}[gg] = \frac{\alpha_s^2 \pi}{s} \left[\beta \left(\frac{5}{48} + \frac{31m^2}{24s} \right) + \left(\frac{2m^2}{3s} + \frac{m^4}{6s^2} \right) \log \frac{1-\beta}{1+\beta} \right]$$

\Rightarrow no MSSM parameter dependence

SUSY-QCD corrections

SUSY-QCD corrections

- NLO cross section depends on
 - squark & gluino masses
 - stop mixing angle
 - \rightarrow dependence numerically small

SUSY-QCD corrections

- NLO cross section depends on
 - squark & gluino masses
 - stop mixing angle
 - \rightarrow dependence numerically small

 \checkmark NLO cross section near threshold $\beta \ll 1$:

$$\sigma_{q\bar{q}} \approx \frac{\alpha_s^2(\mu^2)}{m^2} \frac{\pi}{54} \beta^3 \\ \times \left(1 + 4\pi \alpha_s(\mu^2) \left\{ -\frac{1}{48\beta} + \frac{2}{3\pi^2} \ln^2(8\beta^2) - \frac{107}{36\pi^2} \ln(8\beta^2) - \frac{2}{3\pi^2} \ln(8\beta^2) \ln\left(\frac{\mu^2}{m^2}\right) \right\} \right)$$

$$\sigma_{gg} \approx \frac{\alpha_s^2(\mu^2)}{m^2} \frac{7\pi}{384} \beta$$

$$\times \left(1 + 4\pi \alpha_s(\mu^2) \left\{ \frac{11}{336\beta} + \frac{3}{2\pi^2} \ln^2(8\beta^2) - \frac{183}{28\pi^2} \ln(8\beta^2) - \frac{2}{3\pi^2} \ln(8\beta^2) \ln\left(\frac{\mu^2}{m^2}\right) \right\} \right)$$

 \rightarrow large NLO corrections in gg channel

\checkmark reduced scale dependence \lesssim 15%

\blacksquare reduced scale dependence \lesssim 15%

Solution K = $\sigma(\text{NLO})/\sigma(\text{LO}) \sim 1 - 1.5$

Top-squark production: NLO cross sections

 \rightarrow small dependence on SUSY-Parameters

JLHC

Top-squark searches

• Top-squark search in $e^{\pm}e^{\pm}+\geq 2j$ final startes (CDF, Phys. Rev. Lett. 83 (1999))

 \checkmark semi-weak process, but χ s are light in most models

Current project: associated $\, pp/par p o \widetilde q \widetilde \chi, \widetilde g \widetilde \chi \,$ production

\checkmark semi-weak process, but χ s are light in most models

Beenakker, MK, Plehn, Spira, Zerwas; Berger, Klasen, Tait

Current project: associated $\, pp/par p o \widetilde q \widetilde \chi, \widetilde g \widetilde \chi \,$ production

\checkmark semi-weak process, but χs are light in most models

Beenakker, MK, Plehn, Spira, Zerwas; Berger, Klasen, Tait

LO scale uncertainty $\mathcal{O}(100\%) \Rightarrow$ need NLO calculation

SUSY-QCD corrections: preliminary results

reduced scale dependence

In NLO SUSY-QCD corrections for MSSM particle production at hadron colliders

→ public code PROSPINO (Beenakker, MK, Plehn, Spira, Zerwas)

In NLO SUSY-QCD corrections for MSSM particle production at hadron colliders

→ public code PROSPINO (Beenakker, MK, Plehn, Spira, Zerwas)

