Desertec

Outline

- What and who is Desertec?
- Power Plants Overview
- Solar irradiation in EUMENA
- Concentrating solar power (CSP) Power Plant
- Energy Transportation
- Advantages and Problems of Desertec

What and who is Desertec?

- a global civil society initiative aiming to shape a sustainable future
 formed of scientists, politicians and ocenomists
- formed of scientists, politicians and economists

What and who is Desertec?

- a global civil society initiative aiming to shape a sustainable future
- formed of scientists, politicians and economists

What do they do?

- inform society and politicians
- promote establishment of framework conditions
- support knowledge transfer
- foster exchange and co-operation

What and who is Desertec?

- a global civil society initiative aiming to shape a sustainable future
- formed of scientists, politicians and economists

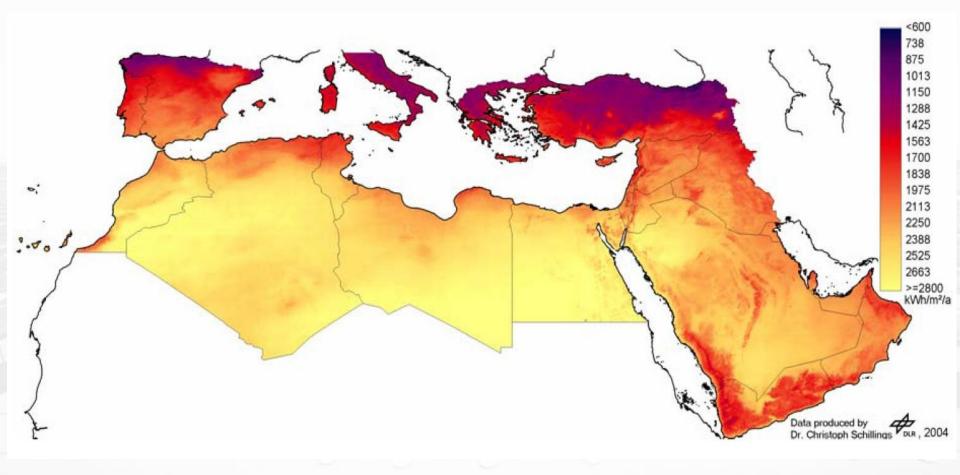
What do they do?

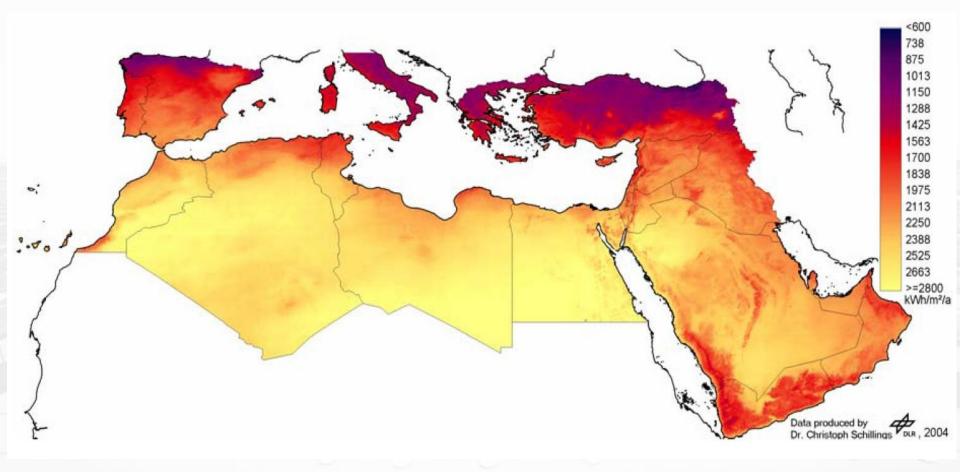
- inform society and politicians
- promote establishment of framework conditions
- support knowledge transfer
- foster exchange and co-operation

What is the concept?

- choosing the best locations for renewable energy production
- transport it to the places of demand

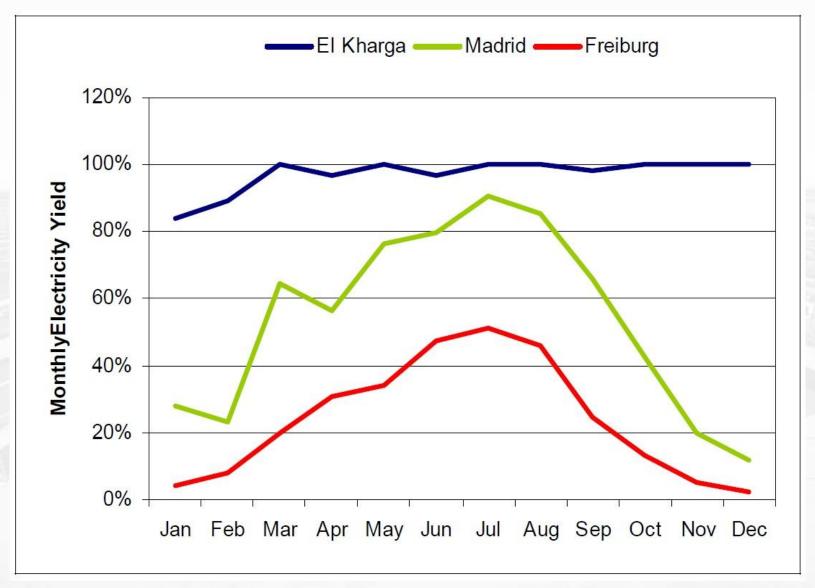
Eurpoean-Union-Middle-East-North-African (EUMENA) Concept

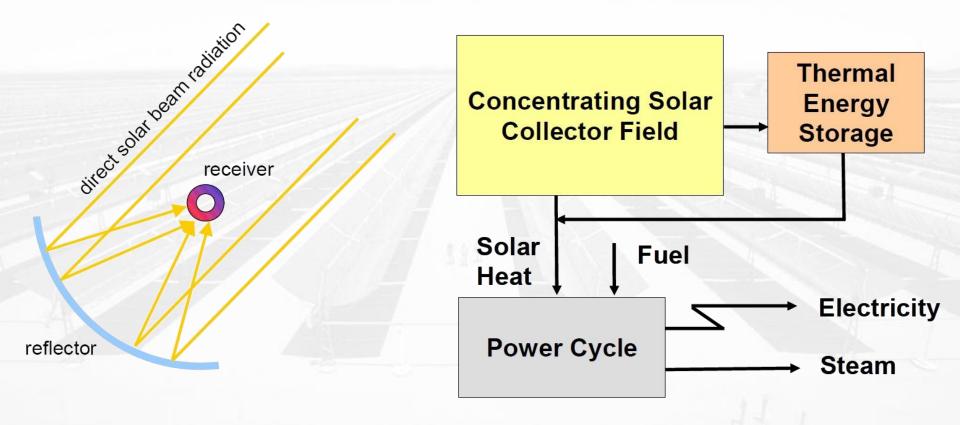

Power Plants Overview

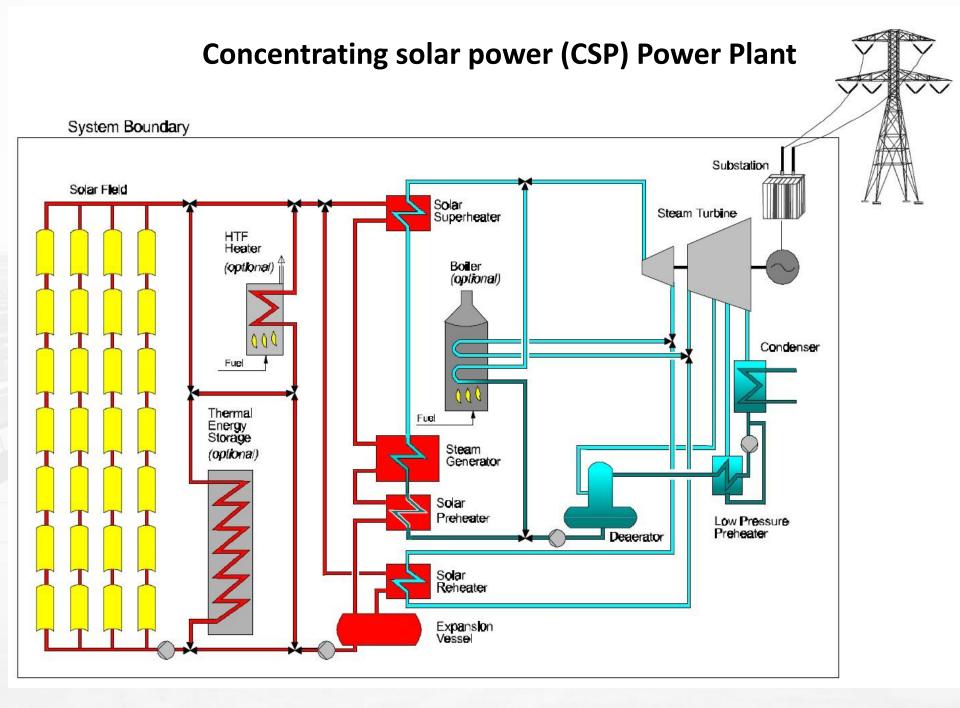

Power Plant (renewable)	Energy properties
Wind Power	weather fluctuations
Photovoltaic	 seasonal and weather fluctuations (just in Europe) expensive
Biomass	 seasonal fluctuations good storability high area demand
Geothermal	no fluctuationsexpensive
Hydropower	 seasonal fluctuations good storability exhausted
Concentrating Solar Power (CSP)	 seasonal and weather fluctuations (just in Europe) good storability expensive

Power Plants Overview


Power Plant (renewable)	Energy properties
Wind Power	weather fluctuations
Photovoltaic	 seasonal and weather fluctuations (just in Europe) expensive
Biomass	 seasonal fluctuations good storability high area demand
Geothermal	no fluctuationsexpensive
Hydropower	 seasonal fluctuations good storability exhausted
Concentrating Solar Power (CSP)	 seasonal and weather fluctuations (just in Europe) good storability expensive


→ Concentrate on CSP Power Plants



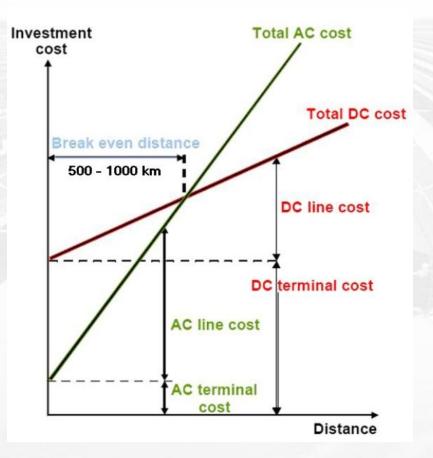

→ large increase toward southern countries
 → energy production a lot more efficient in North Africa

 \rightarrow considerably less fluctuation in North Africa than in Europe

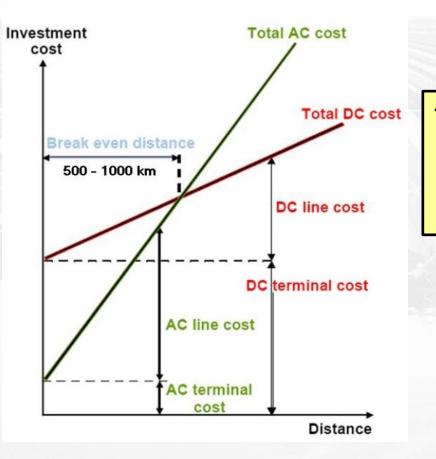
Source: http://upload.wikimedia.org/wikipedia/commons/0/01/Solar_troughs_in_the_Negev_desert_of_Israel.jpg

Source: http://upload.wikimedia.org/wikipedia/commons/4/40/Solarplant-050406-05.jpg

Source: http://upload.wikimedia.org/wikipedia/commons/4/44/Solarplant-050406-04.jpg

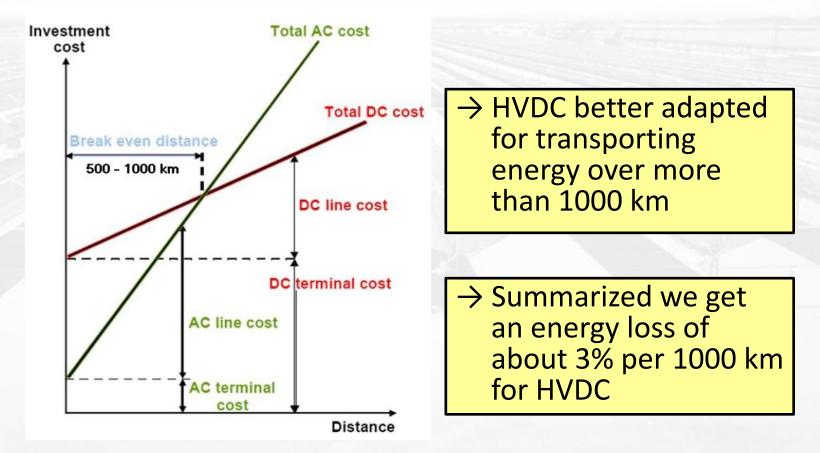

Parameter	Unit	HVAC		HVDC	
Operation Voltage	kV	750	1150	± 600	± 800
overhead line losses	%/1000 km	8%	6%	5%	2.5%
sea cable losses	%/100 km	60%	50%	0.33%	0.25%
terminal losses	%/station	0.2%	0.2%	0.7%	0.6%

Values for transportation of 5 GW

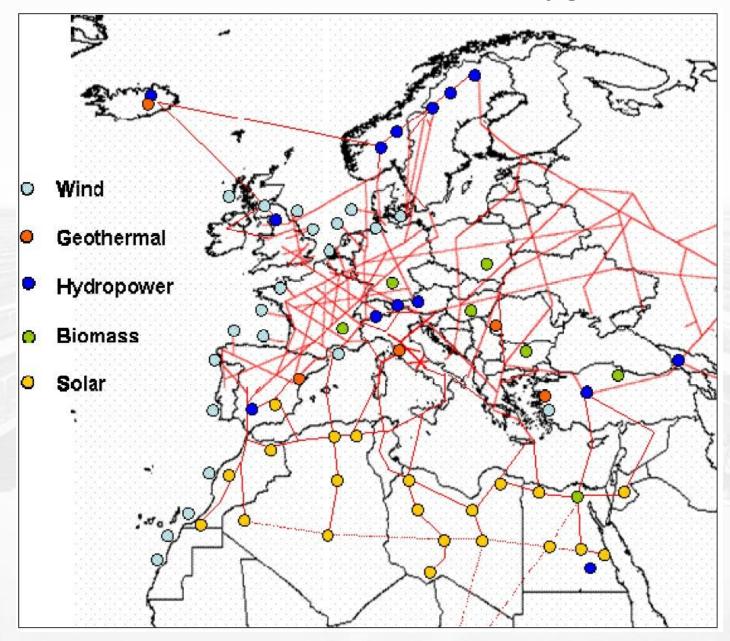

Parameter	Unit	HVAC		HVDC	
Operation Voltage	kV	750	1150	± 600	± 800
overhead line losses	%/1000 km	8%	6%	5%	2.5%
sea cable losses	%/100 km	60%	50%	0.33%	0.25%
terminal losses	%/station	0.2%	0.2%	0.7%	0.6%
overhead line cost	M€/1000 km	400 - 750	1000	400 - 450	250 - 300
sea cable cost	M€/1000 km	3200	5900	2500	1800
terminal cost	M€/station	80	80	250 - 350	250 - 350

Values for transportation of 5 GW

Parameter	Unit	HVAC		HVDC	
Operation Voltage	kV	750	1150	± 600	± 800
overhead line losses	%/1000 km	8%	6%	5%	2.5%
sea cable losses	%/100 km	60%	50%	0.33%	0.25%
terminal losses	%/station	0.2%	0.2%	0.7%	0.6%
overhead line cost	M€/1000 km	400 - 750	1000	400 - 450	250 - 300
sea cable cost	M€/1000 km	3200	5900	2500	1800
terminal cost	M€/station	80	80	250 - 350	250 - 350



Parameter	Unit	HVAC		HVDC	
Operation Voltage	kV	750	1150	± 600	± 800
overhead line losses	%/1000 km	8%	6%	5%	2.5%
sea cable losses	%/100 km	60%	50%	0.33%	0.25%
terminal losses	%/station	0.2%	0.2%	0.7%	0.6%
overhead line cost	M€/1000 km	400 - 750	1000	400 - 450	250 - 300
sea cable cost	M€/1000 km	3200	5900	2500	1800
terminal cost	M€/station	80	80	250 - 350	250 - 350



→ HVDC better adapted for transporting energy over more than 1000 km

Parameter	Unit	HVAC		HVDC	
Operation Voltage	kV	750	1150	± 600	± 800
overhead line losses	%/1000 km	8%	6%	5%	2.5%
sea cable losses	%/100 km	60%	50%	0.33%	0.25%
terminal losses	%/station	0.2%	0.2%	0.7%	0.6%
overhead line cost	M€/1000 km	400 - 750	1000	400 - 450	250 - 300
sea cable cost	M€/1000 km	3200	5900	2500	1800
terminal cost	M€/station	80	80	250 - 350	250 - 350

Vision of the HVDC electricity grid

Advantages and Problems of Desertec

Advantages

- Reducing Emission of CO₂
- Sustainable production of energy
- Assuring electrical power supply for Europe
- Advantages in MENA:
 - Creating jobs and improving infrastructure
 - Thermal desalination of sea water (CO₂-free)

Technical problems

Problem:

Conditions for the mirrors of the CSPs are very hard, they

have to resist UV-radiation, storms etc.

Solution:

There is a safety position for the mirrors

Example:

 Mirrors in the Mojave desert (California) resist already for over 20 years different kinds of storms, breaking only 0,4% per year

Economical problems

Problem:

- The big companies involved in Desertec want to extend their monopolies
- Small companies cannot afford to join in Desertec

Counter-argument:

Generating only 17% of the necessary energy is no monopoly

Economical problems

Problem:

 Instead of investing the money in MENA there can be achieved much more in Europe

Counter-argument:

- The Energy that can be generated in Europe isn't enough to cover the consumption
- Especially to compensate the seasonal fluctuations

Economical problems

Problem:

- Who pays for it?
- Generating power with CSPs is not profitable in comparison to conventional possibilities
- Not many investors are interested at the moment
- The involved companies are able to afford only about 30% of the costs
- It is not possible to schedule such a big project properly or to estimate the costs correctly

Political problems

Problem:

- There are to many involved parties
- Every state will try to take advantage, so there will be much resistance in MENA
- Ruling parties primarily want to keep their power (especially family clans)
- They don't care for the progress of the economy
- Due to the Arab Spring the situation may have changed in a good or bad way

Political problems

Problem:

 Importing too much energy will create political dependencies

Counter-argument:

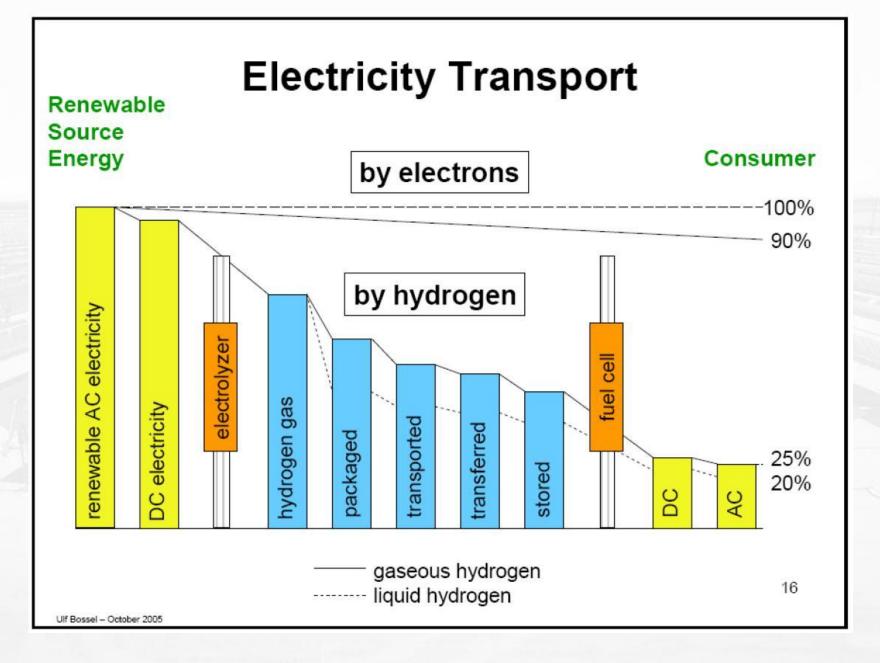
- Since the energy will be supplied from many states the problem of political dependencies will decrease
- Europe is already dependent (Russian-Ukrainian gas conflict)
- Europe is already importing oil and gas from Algeria and Libya

Risk of terroristic assaults

Solution:

- Only 17% of the necessary energy will be imported
- There will still exist back-up power plants for compensating the fluctuations of renewable energy sources
- So it will be possible to compensate the missing energy for a while
- Economic progress and better education decrease this risk

Summary


- Desertec is a concept to solve the energy problem in the world
- It concentrates on the production of energy in the most efficient places (mostly deserts)
- CSP power plants in North Africa are very suitable to produce a large part (app. 17 %) of the European energy demand in the future
- The transportation takes place via HVDC, which has a loss rate of about 3% over 1000 km
- Investment costs for an EUMENA HVDC energy grid are high
- From the technical point of view there are no big problems
- Political situation in MENA very unclear and not predictable
- Not profitable yet, not enough Investors

Thank you for your attention!

Sources

- Trans-CSP study: http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/ projects/TRANS-CSP_Full_Report_Final.pdf
- 2. Desertec Foundation: http://www.desertec.org/
- 3. SolarPaces: http://www.solarpaces.org/inicio.php
- 4. http://www.welt.de/print/wams/vermischtes/article13726066/Stromoasein-der-Sahara.html
- 5. http://www.managermagazin.de/unternehmen/energie/0,2828,635955,00.html
- 6. http://www.dw-world.de/dw/article/0,,15538574,00.html
- 7. http://www.stern.de/wissen/natur/desertec-startschuss-fuerwuestenstrom-projekt-706083.html
- 8. http://de.wikipedia.org/wiki/Desertec

Why not use hydrogen to transport energy?

