Exercises on General Relativity and Cosmology
 Priv. Doz. Dr. S. Förste

-Class Exercises-

Exercise 0.1: Lorentz boosts

Consider a boost in the x-direction with speed $v_{A}=\tanh (\alpha)$ followed by a boost in the y-direction with a speed $v_{B}=\tanh (\beta)$. Show that the resulting Lorentz transformation is the same as doing a pure rotation followed by a pure boost, and determine the rotation and boost.

Exercise 0.2: Electromagnetism

Maxwell's equations are given by

$$
\vec{\nabla} \cdot \vec{E}=\epsilon, \quad \vec{\nabla} \times \vec{B}=\frac{\partial \vec{E}}{\partial t}+\vec{J}, \quad \vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

To make their properties under Lorentz transformation explicit, we can choose an antisymmetric 4×4 tensor, $F^{\mu \nu}$, the electromagnetic field tensor and the (charge and current) source density four-vector, J^{μ}, as:

$$
\begin{gathered}
F^{\mu \nu}(t, \mathbf{x})=\left(\begin{array}{cccc}
0 & E_{1} & E_{2} & E_{3} \\
-E_{1} & 0 & B_{3} & -B_{2} \\
-E_{2} & -B_{3} & 0 & B_{1} \\
-E_{3} & B_{2} & -B_{1} & 0
\end{array}\right) \\
J^{\mu}(t, \mathbf{x})=(\epsilon, \mathbf{J})=\left(e \delta^{3}(\mathbf{x}-\mathbf{x}(t)), e \delta^{3}(\mathbf{x}-\mathbf{x}(t)) \frac{d \mathbf{x}(t)}{d t}\right)
\end{gathered}
$$

(a) Show that $\partial_{\mu} F^{\mu \nu}=-J^{\nu}$ and $\epsilon^{\mu \nu \rho \sigma} \partial_{\nu} F_{\rho \sigma}=0$ reproduce Maxwell's equations. What are the Lorentz invariants that can be constructed?
(b) Verify in the rest frame that

$$
f^{\mu} \equiv \frac{d p^{\mu}}{d \tau}=e F_{\nu}^{\mu} \frac{d x^{\nu}}{d \tau}
$$

is the correct equation for the electromagnetic four-force f^{μ} acting on a charged particle. $\left(p^{\mu}=m d x^{\mu} / d \tau\right)$

Exercise 0.3: Energy-momentum tensor

In analogy to the electrical charge and current density vector above, we can define a "charge" and "current density" for the matter 4-momentum, p^{μ}, the matter energy-momentum tensor:

$$
T_{m}^{\mu \nu}(\mathbf{x}, t) \equiv p^{\mu}(t) \frac{d x^{\nu}(t)}{d t} \delta^{3}(x-x(t))
$$

(a) Show that the energy-momentum tensor is only conserved up to a force density, G^{μ} which vanishes for free particles:

$$
\partial_{\nu} T^{\mu \nu}=G^{\mu}
$$

(b) Check that for the (interacting) electromagnetic quantities given above, we get G^{μ} to be $F_{\nu}^{\mu} J^{\nu}$.
(c) The electromagnetic energy-momentum tensor was defined in the lecture as:

$$
T_{e m}^{\mu \nu} \equiv F_{\rho}^{\mu} F^{\nu \rho}-\frac{1}{4} \eta^{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}
$$

Show that the divergence of this cancels with that of G^{μ} defined in (b), so that $T_{m}^{\mu \nu}+T_{e m}^{\mu \nu}$ is conserved.

