Exercises on General Relativity and Cosmology

Priv. Doz. Dr. S. Förste

-Home Exercises-

Due 4 May 2011

Exercise 3.1: Lagrange formalism with generalized coordinates

(a) Obtain the equations of motion for the general coordinates q^{k} with metric $g_{i j}(q)$ from the Lagrange equation:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}^{k}}-\frac{\partial \mathcal{L}}{\partial q^{k}}=0
$$

where $\mathcal{L}=T(\dot{q}, q)-V(q)$. Take the KE to be

$$
T=\frac{m}{2} g_{i j}(q) \dot{q}^{i} \dot{q}^{j}
$$

(3 credits)
(b) Verify that the e.o.m in (a) take the form:

$$
\begin{equation*}
\ddot{q}^{l}+\Gamma^{l}{ }_{i j} \dot{q}^{i} \dot{q}^{j}=-\frac{1}{m} g^{l k} \frac{\partial V}{\partial q^{k}} \tag{1}
\end{equation*}
$$

(2 credits)
(c) Show that the Christoffel symbols above, $\Gamma^{l}{ }_{i j}$, are of the usual form:

$$
\Gamma^{l}{ }_{i j}=\frac{1}{2} g^{l k}\left(\frac{\partial g_{i k}}{\partial q^{j}}+\frac{\partial g_{j k}}{\partial q^{i}}-\frac{\partial g_{i j}}{\partial q^{k}}\right)
$$

(2 credits)
Remark: Note that the variational principle, $\delta \int\left(g_{i j} \dot{x}^{a} \dot{x}^{b}\right)=0$ gives the same geodesics as the defining property for geodesics, $\delta \int\left(\left(g_{i j} \dot{x}^{a} \dot{x}^{b}\right)\right)^{\frac{1}{2}}=0$, where s is any affine parameter like, for eg, the proper length. This variation gives the Christoffel connection (torsionless and metric-compatible), irrespective of any other connection that may be defined on the manifold. So, in practice, a very fast way of computing Christoffel symbols is to write down the Euler-Lagrange equations for the simplified action and then read off the Christoffel symbols from the resulting geodesic equation.

Exercise 3.2: Christoffel symbols for rotating coordinates

(7 credits)
Fictitious forces that are considered in non-inertial frames in Newtonian mechanics can be seen to arise from the geometry that describes the frame. As an example, let us consider the rotating coordinates system from exercise 1.2(b) :
$t^{\prime}=t ; \quad x^{\prime}=\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \cos (\phi-\omega t) ; \quad y^{\prime}=\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \sin (\phi-\omega t) ; \quad z=z^{\prime} ; \quad \tan (\phi)=y / x$
(a) Use the results of exercise(3.1) to calculate the e.o.m for a particle with a flat potential in the non-inertial rotating coordinates given above
(4 credits)
(b) Rearrange the result and identify the terms that describe the centrifugal and coriolis forces (both fictitious) that arise in a rotating frame
(3 credits)

Exercise 3.3: Christoffel symbols for a diagonal metric

For a diagonal metric, prove that the Christoffel symbols are given by
(a) $\Gamma^{\mu}{ }_{\nu \lambda}=0$
(6 credits)
(b) $\Gamma_{\lambda \lambda}^{\mu}=-\frac{1}{2 g_{\mu \mu}} \frac{\partial g_{\lambda \lambda}}{\partial x^{\mu}}$
(c) $\Gamma^{\mu}{ }_{\mu \lambda}=\frac{\partial}{\partial x^{\lambda}}\left(\log \left(\left|g_{\mu \mu}\right|^{\frac{1}{2}}\right)\right.$
(d) $\Gamma^{\mu}{ }_{\mu \mu}=\frac{\partial}{\partial x^{\mu}}\left(\log \left(\left|g_{\mu \mu}\right|^{\frac{1}{2}}\right)\right.$

Here, $\mu \neq \nu \neq \lambda \neq \mu$ and there is no summation over repeated indices.

