Exercise 03 27 April 2011 SS 2011

Exercises on General Relativity and Cosmology

Priv. Doz. Dr. S. Förste

-Home Exercises-Due 4 May 2011

Exercise 3.1: Lagrange formalism with generalized coordinates (7 credits)

(a) Obtain the equations of motion for the general coordinates q^k with metric $g_{ij}(q)$ from the Lagrange equation:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}^k} - \frac{\partial \mathcal{L}}{\partial q^k} = 0$$

where $\mathcal{L} = T(\dot{q}, q) - V(q)$. Take the KE to be

$$T = \frac{m}{2}g_{ij}(q) \ \dot{q}^i \dot{q}^j$$

 $(3 \ credits)$

(b) Verify that the e.o.m in (a) take the form:

$$\ddot{q}^{l} + \Gamma^{l}{}_{ij} \dot{q}^{i} \dot{q}^{j} = -\frac{1}{m} g^{lk} \frac{\partial V}{\partial q^{k}} \tag{1}$$

 $(2 \ credits)$

(c) Show that the Christoffel symbols above, Γ^{l}_{ij} , are of the usual form:

$$\Gamma^{l}_{\ ij} = \frac{1}{2} g^{lk} \left(\frac{\partial g_{ik}}{\partial q^{j}} + \frac{\partial g_{jk}}{\partial q^{i}} - \frac{\partial g_{ij}}{\partial q^{k}} \right)$$
(2 credits)

Remark: Note that the variational principle, $\delta \int (g_{ij}\dot{x}^a\dot{x}^b) = 0$ gives the same geodesics as the defining property for geodesics, $\delta \int ((g_{ij}\dot{x}^a\dot{x}^b))^{\frac{1}{2}} = 0$, where s is any affine parameter like, for eg, the proper length. This variation gives the Christoffel connection (torsionless and metric-compatible), irrespective of any other connection that may be defined on the manifold. So, in practice, a very fast way of computing Christoffel symbols is to write down the Euler-Lagrange equations for the simplified action and then read off the Christoffel symbols from the resulting geodesic equation.

Exercise 3.2: Christoffel symbols for rotating coordinates (7 credits) Fictitious forces that are considered in non-inertial frames in Newtonian mechanics can be seen to arise from the geometry that describes the frame. As an example, let us consider the rotating coordinates system from exercise 1.2(b) :

$$t' = t ; \quad x' = (x^2 + y^2)^{\frac{1}{2}} \cos(\phi - \omega t) ; \quad y' = (x^2 + y^2)^{\frac{1}{2}} \sin(\phi - \omega t); \quad z = z'; \quad \tan(\phi) = y/x$$

- (a) Use the results of exercise(3.1) to calculate the e.o.m for a particle with a flat potential in the non-inertial rotating coordinates given above (4 credits)
- (b) Rearrange the result and identify the terms that describe the centrifugal and coriolis forces (both fictitious) that arise in a rotating frame (3 credits)

Exercise 3.3: Christoffel symbols for a diagonal metric(6 credits)For a diagonal metric, prove that the Christoffel symbols are given by

(a) $\Gamma^{\mu}_{\ \nu\lambda} = 0$ (1 credit)

(b)
$$\Gamma^{\mu}_{\ \lambda\lambda} = -\frac{1}{2g_{\mu\mu}}\frac{\partial g_{\lambda\lambda}}{\partial x^{\mu}}$$
 (2 credits)

(c)
$$\Gamma^{\mu}_{\ \mu\lambda} = \frac{\partial}{\partial x^{\lambda}} \left(log(|g_{\mu\mu}|^{\frac{1}{2}}) \right)$$
 (1 credit)

(d)
$$\Gamma^{\mu}_{\ \mu\mu} = \frac{\partial}{\partial x^{\mu}} \left(log(|g_{\mu\mu}|^{\frac{1}{2}}) \right)$$
 (2 credits)

Here, $\mu \neq \nu \neq \lambda \neq \mu$ and there is no summation over repeated indices.