Exercises on General Relativity and Cosmology

Priv. Doz. Dr. S. Förste

-Home Exercises-

Due 8 June 2011

Exercise 8.1: Noether's theorem

(a) Consider the action:

$$
S=\int d^{d} x \mathcal{L}\left(\Phi, \partial_{\mu} \Phi\right)
$$

with the following large "active" transformation of, both, the position and of the field: $x \rightarrow x^{\prime} ; \Phi(x) \rightarrow \Phi^{\prime}\left(x^{\prime}\right)=\mathcal{F}(\Phi(x))$. Verify the following form of the transformed action:
(2 credits)

$$
S^{\prime} \equiv \int d^{d} x \mathcal{L}\left(\Phi^{\prime}(x), \partial_{\mu} \Phi^{\prime}(x)\right) \stackrel{\text { verify }}{=} \int d^{d} x\left|\frac{\partial x^{\prime}}{\partial x}\right| \mathcal{L}\left(\mathcal{F}(\Phi(x)), \frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \partial_{\nu} \mathcal{F}(\Phi(x))\right)
$$

(b) Consider a (active) large Lorentz transformation: $x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$ and $\Phi^{\prime}(\Lambda x)=L_{\Lambda} \Phi(x)$. (where, Λ is the Lorentz transformation matrix and L_{Λ} is an appropriate representation of the Lorentz group on the field). Show that the transformed action of 8.1(a) takes the following form:
(2 credits)

$$
S^{\prime}=\int d^{d} x\left(L_{\Lambda} \Phi,\left(\Lambda^{-1} \cdot \partial\left(L_{\Lambda} \Phi\right)\right)_{\mu}\right)
$$

(c) Now consider an infinitesimal (small) active transformation:

$$
x^{\prime \mu}=x^{\mu}+\omega_{a} \frac{\delta x^{\mu}}{\delta \omega_{a}} ; \Phi^{\prime}\left(x^{\prime}\right)=\Phi(x)+\omega_{a} \frac{\delta \mathcal{F}}{\delta \omega_{a}}(x)
$$

where, $\left\{\omega_{a}\right\}$ is a set of infinitesimal parameters. If the generator G_{a} is defined as follows:

$$
\delta_{\omega} \Phi(x) \equiv \Phi^{\prime}(x)-\Phi(x) \equiv-i \omega_{a} G_{a} \Phi(x)
$$

Show that it is explicitly given by:
(2 credits)

$$
i G_{a} \Phi=\frac{\delta x^{\mu}}{\delta \omega_{a}} \partial_{\mu} \Phi-\frac{\delta \mathcal{F}}{\delta \omega_{a}}
$$

(d) Consider an (active) infinitesimal Lorentz transformation:

$$
x^{\prime \mu}=x^{\mu}+\omega^{\mu}{ }_{\nu} x^{\nu} ; \mathcal{F}(\Phi) \equiv L_{\Lambda} \Phi \approx\left(1-\frac{1}{2} i \omega_{\rho \nu} S^{\rho \nu}\right) \Phi
$$

Show that the generators of the Lorentz transformations are:

$$
L^{\rho \nu}=i\left(x^{\rho} \partial^{\nu}-x^{\nu} \partial^{\rho}\right)+S^{\rho \nu}
$$

(e) Plug in the infinitesimal transformations of 8.1(c), with varying ω_{a}, in 8.1(a) and expand Lagrangian to obtain the following classically conserved current: (4 credits)

$$
j_{a}^{\mu}=\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} \partial_{\nu} \Phi-\delta_{\nu}^{\mu} \mathcal{L}\right] \frac{\delta x^{\nu}}{\delta \omega_{a}}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} \frac{\delta \mathcal{F}}{\delta \omega_{a}}
$$

Hint: Use $\operatorname{det}(1+E) \approx 1+\operatorname{Tr}(E)$ for small E. Also, assume that the action is invariant under rigid (ie. constant ω_{a}) transformations
(f) Show that the above current for the Lorentz transformation of 8.1(d) is: (2 credits)

$$
j^{\mu \nu \rho}=T_{c}^{\mu \nu} x^{\rho}-T_{c}^{\mu \rho} x^{\nu}+\frac{1}{2} i \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} S^{\nu \rho} \Phi
$$

where, T_{c}, is the canonical energy-momentum tensor derived in class.

Exercise 8.2: Various definitions of energy-momentum tensor

(6 credits) In general, the canonical tensor, $T_{c}^{\mu \nu}$, is not symmetric. But, since the following modification does not change the classical conservation property:

$$
T_{B}^{\mu \nu}=T_{c}^{\mu \nu}+\partial_{\rho} B^{\rho \mu \nu} ; \quad B^{\rho \mu \nu}=-B^{\mu \rho \nu}
$$

we can hope to get a classically (ie. only for field configurations obeying e.o.m) symmetric $T_{B}^{\mu \nu}$, called the Belinfante tensor. The tensor $B^{\rho \mu \nu}$ is, by no means, unique.
(a) Show that one possible choice of $B^{\rho \mu \nu}$ is:

$$
B^{\rho \mu \nu}=\frac{1}{4} i\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} S^{\nu \rho} \Phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\rho} \Phi\right)} S^{\mu \nu} \Phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\nu} \Phi\right)} S^{\mu \rho} \Phi\right]
$$

Hint: Use the fact that $S^{\mu \nu}=-S^{\nu \mu}$ and use $\partial_{\mu} j^{\mu \nu \rho}=0$ of ex-8.1(f) above.
(b) Consider the following Lagrangian for a massive vector field A_{μ} (in Euclidian spacetime):
(2 credits)

$$
\mathcal{L}=\frac{1}{4} F^{\alpha \beta} F_{\alpha \beta}+\frac{1}{2} m^{2} A^{\alpha} A_{\alpha}
$$

where, $F_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial A_{\beta} A_{\alpha}$. Write down its Belinfante tensor for $B^{\alpha \mu \nu}=F^{\alpha \mu} A^{\nu}$
(c) As was said above, the tensor of $8.2(\mathrm{~b})$ will be symmetric only classically. But, there exists another common ($c f$. exercise $0.3(\mathrm{c})$ for $m=0$) expression for an identically (ie. classical and otherwise) symmetric energy-momentum tensor of a vector field:

$$
\hat{T}_{B}^{\mu \nu}=F^{\mu \alpha} F^{\nu}{ }_{\alpha}-\frac{1}{4} \eta^{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}+m^{2}\left[A^{\mu} A^{\nu}-\frac{1}{2} \eta^{\mu \nu} A^{\alpha} A_{\alpha}\right]
$$

Show that it coincides with the Belinfante tensor for classical configurations. (2 credits)
Remark: The Hilbert tensor, derived in class, is an identically symmetric energy-momentum tensor. Note that these are all non-gravitational (ie. matter) energy-momentum tensors. The list of gravitational tensor candidates is longer and contentious.

