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– Mock Exam –

1.) Overview (15 Points)

Give a short answer to the following questions.

(a) Write down Einstein’s field equation as well as the Einstein-Hilbert action. What
is the definition of the energy-momentum tensor? (1 Point)

(b) What are the Bianchi identities? State the symmetries of Rµνρσ. How many
independent components does the Riemann tensor have in four dimensions?
(2 Points)

(c) What are Riemann Normal coordinates? Why does the curvature in general not
vanish in these coordinates? (1 Point)

(d) State Noether’s theorem. What is the relation between the Noether current and
the Noether charge? (1 Point)

(e) Use Einstein’s equations to show that the Ricci scalar vanishes if the energy-
momentum tensor is traceless. What changes if there is in addition a cosmolo-
gical constant? (2 Points)

(f) What is an affine parameterization of a geodesic? Write down the corresponding
geodesic equation. (1 Point)

(g) How are vectors defined on Riemannian manifolds? What are one-forms?
(2 Points)

(h) Define the Non-coordinate basis. What are Vielbeins? (1 Point)

(i) What is an affine connection? What doesmetric compatibilitymean? (2 Points)

(j) Show that the partial derivative of a tensor does not transform as a tensor under
coordinate changes. How is this issue resolved in general relativity? (2 Points)

2.) Equations of motion in curved spacetime (20 Points)

The action of a point particle with mass m in a gravitational field is given by

S =
1

2

∫
dτ
(
η−1ẋ2 − ηm2

)
=

1

2

∫
dτ

(
η−1 dxµ

dτ

dxν

dτ
gµν − ηm2

)
,

where ds2 = γττdτ
2 is an independent metric on the trajectory of the particle and

η =
√
−γττ .



(a) Show that the action is invariant under a reparameterization τ 7→ τ ′(τ).
(2 Points)

(b) Assume m 6= 0. Calculate the equation of motion for η. Insert the solution back
into the action and show that one obtains the usual action of a massive point
particle. (3 Points)

(c) Now let m = 0 and calculate the variation of the action. Which condition do
you obtain from the variation with respect to η? Which condition do you obtain
from the variation with respect to xµ?
Hint: To calculate the eom of xµ, vary first with respect to ẋµ. Then use partial
integration. Do not forget to vary gµν. (5 Points)

Let us now consider the action of the electro-magnetic gauge boson

S =

∫
d4xL =

∫
d4x
√
−g
(
−1

4
F µνFµν

)
.

(d) Calculate the energy momentum tensor Tµν = 2√
−g

δL
δgµν .

Hint: You may use δ
√
−g

δgµν = −1
2

√
−ggµν. (4 Points)

(e) Consider now flat Minkowski space, i.e. gµν = ηµν . Here, one has a symmetry
under infinitesimal translations xµ 7→ xµ + εµ. The conserved Noether-current
is the canonical energy momentum tensor T can

µν ,

T can
µν = ηµρ

δL
δ(∂ρAσ)

∂νAσ − ηµνL .

Calculate T can
µν . (4 Points)

(f) Show that Tµν from (d) and T can
µν from (e) differ by a total derivative. (2 Points)

3.) Stereographic Projection (15 Points)

Consider the two-sphere S2:

(x0, x1, x2) : (x0)2 + (x1)2 + (x2)2 = 1 .

A coordinate chart on S2\{(1, 0, 0)} is given by the map xa(ξi) (a = 0, 1, 2; i = 1, 2):

x0 =
(ξ1)2 + (ξ2)2 − 1

(ξ1)2 + (ξ2)2 + 1
, xi =

2ξi

(ξ1)2 + (ξ2)2 + 1
,

which corresponds to a stereographic projection from the north pole onto a plane
through an equator.

(a) Take now ξ1 = r cosϕ and ξ2 = r sinϕ and show that the induced metric
satisfies

ds2 =
4

(1 + r2)2

(
dr2 + r2dϕ2

)
.

(3 Points)
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(b) Show that the stereographic projection is only invertible on S2 \ {(1, 0, 0)} and
determine its inverse. How many coordinate patches are needed to cover S2?
Give these other patches and the transformations between them. (5 Points)

(c) Show that the only non vanishing the Christoffel symbols Γλµν are

Γrrr = − 2r

1 + r2
, Γrϕϕ =

r(r2 − 1)

1 + r2
, Γϕrϕ = − r2 − 1

r(1 + r2)
.

Hint: You could use the Euler Lagrange formalism.
Show that the curve r(t) = tan(θ/2), ϕ = ϕ0 (constant) is a geodesic. (7 Points)

4.) Killing vectors and constants of motion (20 Points)

Killing vectors are in one-to-one correspondence to isometries of the metric. Mo-
reover, as we will see here, every Killing vector implies the existence of a conserved
quantity.

(a) Show that if the metric is independent of a coordinate xσ, the corresponding
vector ∂σ is a Killing vector. (3 Points)

(b) Let ξ be a Killing vector, xµ(λ) a geodesic and uµ(λ) the four momentum. Show
that the quantity ξµuµ is constant along the geodesic.
Hint: Show first that uλ∇λu

µ = 0. (3 Points)

(c) In addition we always have another constant of motion for geodesics. Let λ
be an affine parameterization of the geodesic. Show that the geodesic equation
implies that the quantity

ε = −gµν
dxµ

dλ

dxν

dλ
,

is constant along the path. (2 Points)

Consider as an example the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

(d) Write down two Killing vectors of this metric. Show that the corresponding
conserved quantities are energy and angular momentum,

E =

(
1− 2M

r

)
dt

dλ
,

J = r2 sin2 θ
dϕ

dλ
.

(3 Points)

(e) Make use of the spherical symmetry to put θ = π
2
. Show that any geodesic

fulfills

1

2

(
dr

dλ

)2

+ V (r) = E ,
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where E = 1
2
E2 and

V (r) =
1

2
ε− εM

r
+
J2

2r2
− MJ2

r3
.

This looks exactly like the equation for a particle of unit mass and ’energy’ E
moving in a one-dimensional potential given by V (r). (5 Points)

(f) What is ε if the particle is a photon? By analyzing the potential, check whether
stable circular orbits exist for photons. (4 Points)

5.) Geodesic deviation equation (10 Points)

Consider a family of geodesics xµ(p, λ) in some curved spacetime, where λ denotes
the affine parameter of the geodesic and p is a label that distinguishes the various
geodesics.

(a) Write down the equation that expresses the fact that xµ(p, λ) is a geodesic for
fixed p with affine parameter λ. (1 Point)

(b) Define

P µ =
∂xµ(p, λ)

∂p
,

as well as the relative velocity

V µ =
∂P µ

∂λ
+
∂xρ

∂λ
ΓµρσP

σ

and the relative acceleration

Aµ =
∂V µ

∂λ
+
∂xρ

∂λ
ΓµρσV

σ .

Show that V µ and Aµ are indeed vectors. What is Aµ in flat space? (4 Points)

(c) Derive the geodesic deviation equation

Aµ = Rµ
νρσ

∂xν

∂λ

∂xρ

∂λ
P σ . (1)

(5 Points)

6.) Gravitational Waves (20 Points)

Consider gravitational waves propagating in x3 direction. The metric is given by a
perturbation around the Minkowski metric η, i.e. gµν = ηµν+hµν with |hµν | � 1. The
solutions to the linearized Einstein equations are linear combinations of solutions
of the form

hµν = Cµνe
ikαxα

, (2)

4



with

(Cµν) =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 .

The momenta take the form kµ = (−k, 0, 0, k). Consider a family of geodesics
x̂µ(p, λ) in flat space given by

x̂µ(p, λ) = (λ, r cos p, r sin p, 0) , (3)

with p and λ as in problem 5. Now we want to investigate what happens when
the gravitational wave passes through this family. In particular, assume that the
gravitational wave is very weak. Hence we will assume that the family of geodesics
is perturbed by a small amount,

xµ(p, λ) = x̂µ(p, λ) + δxµ(p, λ) .

(a) What does the family (3) describe? (1 Point)

(b) Consider the geodesic deviation equation (1). Take as the metric a gravitational
wave and for the family of geodesics the family (3). Expand the geodesic devia-
tion equation to first order in hµν and δxµ(p, λ). Give the form of the geodesic
deviation equation to this order and show that only Rµ

00σ appears.
Note that products of hµν and δxµ(p, λ) are considered second order and can
therefore be dropped. (7 Points)

(c) Verify that

Rµ
00σ =

1

2
∂0∂0h

µ
σ

to first order in hµν . (3 Points)

(d) Show that the geodesic deviation equation in the form derived in part (b) reduces
to

∂3δxµ

∂λ2∂p
=

1

2

∂x̂ν

∂p

∂2hµν
∂λ2

. (4)

(2 Points)

(e) Show that (4) is solved (among others) by

δxµ =
1

2
hµν x̂

ν . (5)

(2 Points)

(f) By taking appropriate linear combinations of gravitational waves one can make
one with

h11 = −h22 = 2C11 cos kλ , h12 = h21 = 0

and another one with

h12 = h21 = 2C12 cos kλ , h11 = h22 = 0 .
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For each of these two gravitational waves, use (5) to describe the shape of the
family (3) as a function of time as the gravitational wave passes through it.
Hint: To this order of approximation t = λ. (5 Points)

Useful relations and definitions:

In the whole exam we use units in which GN = c = 1.

Schwarzschild geometry:
For the general metric

ds2 = −A(r)dt2 +B(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
,

the non-vanishing Christoffel symbols are given by

Γttr =
A′

2A
, Γrtt =

A′

2B
, Γrrr =

B′

2B
,

Γrθθ = − r
B
, Γrϕϕ = −r sin2 θ

B
, Γθrθ =

1

r
,

Γθϕϕ = − sin θ cos θ , Γϕrϕ =
1

r
, Γϕθϕ = cot θ ,

plus those, one obtains from these by symmetry.
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