Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H 10.1 Some Matrix Identities

(a) Prove the following matrix identities:

- $(A B)^{T}=B^{T} A^{T}$
- $\operatorname{tr}[A, B]=0$
- $\left(e^{A}\right)^{T}=e^{A^{T}}, \quad\left(e^{A}\right)^{\dagger}=e^{A^{\dagger}}$
- $e^{U A U^{-1}}=U e^{A} U^{-1}$
- If λ is an eigenvalue of A then e^{λ} is an eigenvalue of e^{A}.
- $\operatorname{det} e^{A}=e^{\operatorname{tr} A}$

Hint: Bring A to Jacobi form, $U A U^{-1}=J$, and write J as a sum of a diagonal and a nilpotent matrix which commute. What is the exponential of a diagonal and of a nilpotent matrix?
(2 points)
(b) Show the Baker-Campbell-Hausdorff formula to second order,

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]+\mathcal{O}\left((A, B)^{3}\right)} .
$$

H10.2 Subalgebras

Consider a (matrix) Lie group G with Lie algebra \mathfrak{g} and a subspace $\mathfrak{h} \subset \mathfrak{g}$.
Show:
(a) If \mathfrak{h} is a closed subalgebra, i.e. $h_{1}, h_{2} \in \mathfrak{h} \Rightarrow\left[h_{1}, h_{2}\right] \in \mathfrak{h}$, then $H=e^{\mathfrak{h}}$ is a subgroup of G.
(1.5 points)
(b) If \mathfrak{h} is an invariant subalgebra, i.e. $h \in \mathfrak{h}, g \in \mathfrak{g} \Rightarrow[h, g] \in \mathfrak{h}$, then H is a normal subgroup in G.
(c) If \mathfrak{h} is a null space, i.e. $h \in \mathfrak{h}, g \in \mathfrak{g} \Rightarrow[h, g]=0$, then H is in the center of G. (1 point)
(a) Prove the formula

$$
e^{\mathrm{i} \vec{m} \cdot \vec{\sigma}}=\mathbb{1} \cos (m)+\mathrm{i} \sin (m) \hat{m} \cdot \vec{\sigma}
$$

with $m=|\vec{m}|, \hat{m}=\vec{m} / m .\left(\sigma_{i}\right.$: Pauli matrices, $\left.m_{i} \in \mathbb{R}\right)$
(b) We write

$$
S U(2) \ni U=e^{\mathrm{i} \varphi \hat{n} \cdot \sigma / 2}
$$

with $|\hat{n}|=1$. Choosing \hat{n} to be in the whole unit sphere, what is the parameter space of φ ? What is the identification at the boundary?
(2 points)
(c) For $O \in S O$ (3) we have $O=e^{\alpha \hat{n} \cdot \vec{L}}$ with $0 \leq \alpha \leq \pi$ and \hat{n} again in the unit sphere S^{2} (see last sheet). Show that the map $\mu:(\varphi, \hat{n}) \mapsto(\alpha=\varphi \bmod 2 \pi, \hat{n})$ is a group homomorphism from $S U(2)$ to $S O(3)$. What is the group element associated to $\mu(\varphi=2 \pi, \hat{n})$? What is the preimage of (α, \hat{n}) in terms of $S U(2)$ elements?
(2 points)
Since each $O \in S O(3)$ has exactly two preimages, we find that $S O(3) \cong S U(2) / \mathbb{Z}_{2}$ with $\mathbb{Z}_{2}=\left\{ \pm \mathbb{1}_{2}\right\}$. This fits nicely with the geometrical picture since the three-dimensional ball with opposite points at the boundary identified can be viewed as a three-sphere with opposite points identified. This space is also called real projective space, $\mathbb{P R}^{3}=S^{3} / \mathbb{Z}_{2}$.

