Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H10.1 Some Matrix Identities

(a) Prove the following matrix identities:

• $(AB)^T = B^T A^T$ (1 point)

•
$$tr[A, B] = 0$$
 (1 point)

•
$$(e^{A})^{T} = e^{A^{T}}, \qquad (e^{A})^{\dagger} = e^{A^{\dagger}}$$
 (1 point)

•
$$e^{UAU^{-1}} = Ue^{A}U^{-1}$$
 (1 point)

- If λ is an eigenvalue of A then e^{λ} is an eigenvalue of e^{A} . (1 point)
- det e^A = e^{tr A} Hint: Bring A to Jacobi form, UAU⁻¹ = J, and write J as a sum of a diagonal and a nilpotent matrix which commute. What is the exponential of a diagonal and of a nilpotent matrix? (2 points)
- (b) Show the *Baker-Campbell-Hausdorff* formula to second order,

$$e^{A}e^{B} = e^{A+B+\frac{1}{2}[A,B]+\mathcal{O}((A,B)^{3})}$$

(2 points)

H10.2 Subalgebras

Consider a (matrix) Lie group G with Lie algebra \mathfrak{g} and a subspace $\mathfrak{h} \subset \mathfrak{g}$. Show:

- (a) If \mathfrak{h} is a closed subalgebra, i.e. $h_1, h_2 \in \mathfrak{h} \implies [h_1, h_2] \in \mathfrak{h}$, then $H = e^{\mathfrak{h}}$ is a subgroup of G. (1.5 points)
- (b) If \mathfrak{h} is an invariant subalgebra, i.e. $h \in \mathfrak{h}, g \in \mathfrak{g} \Rightarrow [h,g] \in \mathfrak{h}$, then H is a normal subgroup in G. (1.5 points)
- (c) If \mathfrak{h} is a null space, i.e. $h \in \mathfrak{h}, g \in \mathfrak{g} \implies [h,g] = 0$, then H is in the center of G. (1 point)

(4 points)

 $(9 \ points)$

(6 points)

(a) Prove the formula

$$e^{i\vec{m}\cdot\vec{\sigma}} = \mathbb{1}\cos(m) + i\sin(m)\ \hat{m}\cdot\vec{\sigma}$$

with $m = |\vec{m}|, \ \hat{m} = \vec{m}/m. \ (\sigma_i: \text{ Pauli matrices}, \ m_i \in \mathbb{R})$ (2 points)

(b) We write

$$SU(2) \ni U = e^{i\varphi \hat{n} \cdot \sigma/2}$$

with $|\hat{n}| = 1$. Choosing \hat{n} to be in the whole unit sphere, what is the parameter space of φ ? What is the identification at the boundary? (2 points)

(c) For $O \in SO(3)$ we have $O = e^{\alpha \hat{n} \cdot \vec{L}}$ with $0 \le \alpha \le \pi$ and \hat{n} again in the unit sphere S^2 (see last sheet). Show that the map $\mu : (\varphi, \hat{n}) \mapsto (\alpha = \varphi \mod 2\pi, \hat{n})$ is a group homomorphism from SU(2) to SO(3). What is the group element associated to $\mu(\varphi = 2\pi, \hat{n})$? What is the preimage of (α, \hat{n}) in terms of SU(2) elements? (2 points)

Since each $O \in SO(3)$ has exactly two preimages, we find that $SO(3) \cong SU(2)/\mathbb{Z}_2$ with $\mathbb{Z}_2 = \{\pm \mathbb{1}_2\}$. This fits nicely with the geometrical picture since the three-dimensional ball with opposite points at the boundary identified can be viewed as a three-sphere with opposite points identified. This space is also called *real projective space*, $\mathbb{PR}^3 = S^3/\mathbb{Z}_2$.