Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H 12.1 Complexifications

(a) What is the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$?
(b) Show that $\mathfrak{s l}(2, \mathbb{C})$ is the complexification of $\mathfrak{s u}(2)$, i.e. $\mathfrak{s l}(2, \mathbb{C})=\mathfrak{s u}(2) \otimes_{\mathbb{R}} \mathbb{C}$.

H 12.2 Roots and the Cartan algebra

We consider a Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} spanned by the Cartan generators H_{i}. The remaining generators $E_{\alpha} \in \mathfrak{g} / \mathfrak{h}$ satisfy $\left[H_{i}, E_{\alpha}\right]=\alpha_{i} E_{\alpha}$. We use the scalar product $\langle A, B\rangle=k \operatorname{tr}\left(A^{\dagger} B\right)$. Note that the action considered is always the adjoint, $\operatorname{ad}(A) \cdot B=$ $[A, B]$.
(a) Show that for Hermitean Cartan elements, $H=H^{\dagger}$, we find that H is self-adjoint with respect to the scalar product $\langle\cdot, \cdot\rangle$.
(b) Show that $\left[H_{i},\left[E_{\alpha}, E_{\beta}\right]\right]=\left(\alpha_{i}+\beta_{i}\right)\left[E_{\alpha}, E_{\beta}\right]$.
(c) Show that $\left[E_{\alpha}, E_{-\alpha}\right]$ is in the Cartan algebra. Show further that $\left[E_{\alpha}, E_{-\alpha}\right]=\sum_{i} \alpha_{i} H_{i}$.
(d) Show that for a fixed root α the generators

$$
E_{ \pm}=\frac{1}{|\alpha|} E_{ \pm \alpha}, \quad E_{3}=\frac{1}{|\alpha|^{2}} \sum_{i} \alpha_{i} H_{i}
$$

form a closed and properly normalized $\mathfrak{s u}(2)$ subalgebra.

H12.3 Conjugate representations

Let ρ be a representation of \mathfrak{g} with generators T_{i}.
(a) Show that $\bar{\rho}:=-\rho^{*}$ is also a representation, called the complex conjugate representation.
(b) What are the weights of $\bar{\rho}$?
(c) We call a representation real if $\bar{\rho}=U \rho U^{-1}$ for some automorphism U of the representation space. What does that mean for the weights? Based on this, argue that the adjoint representation is real.

H $12.3 \mathfrak{s u}(3)$ root system

The Lie algebra $\mathfrak{s u}(3)$ consists of the traceless Hermitean 3×3 matrices. A customary basis is $T_{a}=\lambda_{a} / 2$, where the Gell-Mann matrices λ_{a} are

$$
\begin{array}{lll}
\lambda_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{2}=\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), & \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -\mathrm{i} \\
0 & 0 & 0 \\
\mathrm{i} & 0 & 0
\end{array}\right), & \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
\lambda_{7} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right), & \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
\end{array}
$$

They are normalized to $\operatorname{tr} T_{a} T_{b}=\frac{1}{2} \delta_{a b}$. If we choose the normalization constant in the Killing form to be $k=2$ we get $g_{i j}=\delta_{i j}$ and we do not have to care about upper and lower indices on the structure constants, i.e. $f_{a b c}=f_{a b}^{c}$. The independent nonvanishing structure constants are

$$
\begin{aligned}
f^{123} & =2 f^{147}=2 f^{246}=2 f^{257}=2 f^{345}=-2 f^{156} \\
& =-2 f^{367}=\frac{2}{\sqrt{3}} f^{458}=\frac{2}{\sqrt{3}} f^{678}=1
\end{aligned}
$$

This algebra has rank two and it is easy to see that we can choose $H_{1}=T_{3}$ and $H_{2}=T_{8}$ as the Cartan generators.
(a) Show that the root operators are given by

$$
\begin{aligned}
E_{ \pm(1,0)} & =\frac{1}{\sqrt{2}}\left(T_{1} \pm \mathrm{i} T_{2}\right), \quad E_{ \pm\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)}=\frac{1}{\sqrt{2}}\left(T_{4} \pm \mathrm{i} T_{5}\right) \\
E_{ \pm\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)} & =\frac{1}{\sqrt{2}}\left(T_{6} \pm \mathrm{i} T_{7}\right) .
\end{aligned}
$$

(b) The T_{a} naturally act on \mathbb{C}^{3}. The corresponding representation is called the fundamental representation. Deduce the weights of this representation.
(1 point)
(c) Calculate the weights of the representation complex conjugate to the fundamental representation.

