Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H4.1 SO(3) Representation Product

(15 points)
The fundamental, defining and three-dimensional irreducible representation D_{F} of $S O(3)$ acts on a vector $\phi \in \mathbb{R}^{3}$ as

$$
\phi^{i} \mapsto\left(D_{\mathrm{F}}(R) \phi\right)^{i}=R_{j}^{i} \phi^{j}, \quad R \in S O(3) .
$$

We take the tensor product of this representation with itself. It acts on

$$
\Phi^{i j} \in \mathbb{R}^{3} \otimes \mathbb{R}^{3} \cong \mathbb{R}^{9}
$$

as

$$
\Phi^{i j} \mapsto\left(D_{\mathrm{F} \otimes \mathrm{~F}}(R) \Phi\right)^{i j}=\mathscr{R}_{k l}^{i j} \Phi^{k l}
$$

(a) Express the matrix components $\mathscr{R}_{k l}^{i j}$ of $D_{\mathrm{F} \otimes \mathrm{F}}$ in terms of R_{j}^{i}.
(b) Consider the following operators acting on \mathbb{R}^{9} :

$$
\begin{aligned}
\left(\mathscr{P}_{0}\right)_{k l}^{i j} & =\frac{1}{3} \delta^{i j} \delta_{k l}, \\
\left(\mathscr{P}_{1}\right)^{i j} & =\frac{1}{2}\left(\delta_{k}^{i} \delta_{l}^{j}-\delta_{l}^{i} \delta_{k}^{j}\right), \\
\left(\mathscr{P}_{2}\right)_{k l}^{i j} & =\frac{1}{2}\left(\delta_{k}^{i} \delta_{l}^{j}+\delta_{l}^{i} \delta_{k}^{j}\right)-\frac{1}{3} \delta^{i j} \delta_{k l} .
\end{aligned}
$$

Show that they form a complete set of projection operators on \mathbb{R}^{9}, i.e. that $\mathscr{P}_{i} \mathscr{P}_{j}=\delta_{i j} \mathscr{P}_{i}$ and $\sum_{i} \mathscr{P}_{i}=\mathbb{1}$.
(c) Show that $\left[\mathscr{P}_{i}, \mathscr{R}\right]=0$ for $i=0,1,2$.
(d) What does $\mathscr{P}_{i} \not \not \propto \mathbb{1}$ then imply using Schur's lemma? What information do you get about the spaces projected on?
(e) How do the matrices $\mathscr{P}_{i} \Phi$ look like? What is the dimension of $\mathscr{P}_{i} \mathbb{R}^{9}$?

At the end you should recover the decomposition

$$
\begin{equation*}
|l=1\rangle \otimes|l=1\rangle=|l=0\rangle \oplus|l=1\rangle \oplus|l=2\rangle \tag{1}
\end{equation*}
$$

which you should know from angular momentum addition in quantum mechanics.

H4.2 Representation of S_{3}, part 2
(6 points)
Remember last sheet where you constructed a matrix representation of S_{3} acting on $\left\langle v_{1}+v_{2}+v_{3}\right\rangle^{\perp}$.
(a) Show the matrix representation you found in H3.2a) is unitary.
(b) Using your basis $\left\{e_{1}, e_{2}\right\}$ of $\left\langle v_{1}+v_{2}+v_{3}\right\rangle^{\perp}$, compute the matrix $A_{i j}=\left\langle e_{i}, e_{j}\right\rangle_{\mathbb{R}^{3}}$ where $\langle\cdot, \cdot\rangle_{\mathbb{R}^{3}}$ denotes the scalar product in \mathbb{R}^{3} which makes $\left\{v_{i}\right\}$ an orthonormal basis.
(c) Show that using A as a scalar product, the representation of S_{3} acting on $\left\langle v_{1}+v_{2}+v_{3}\right\rangle^{\perp}$, \hat{D}, is a unitary representation, i.e. that

$$
\hat{D}(\sigma) A \hat{D}(\sigma)^{T}=A, \quad \text { for all } \sigma \in S_{3}
$$

H 4.3 Intertwiner

Show that the space of all self-intertwiners of the fundamental representation of $S O(2)$ is isomorphic to \mathbb{C}.

