Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H4.1 SO(3) Representation Product

(15 points)

The fundamental, defining and three-dimensional irreducible representation D_F of SO(3) acts on a vector $\phi \in \mathbb{R}^3$ as

$$\phi^i \mapsto (D_{\mathcal{F}}(R)\phi)^i = R^i{}_i\phi^j, \qquad R \in SO(3).$$

We take the tensor product of this representation with itself. It acts on

$$\Phi^{ij} \in \mathbb{R}^3 \otimes \mathbb{R}^3 \cong \mathbb{R}^9$$

as

$$\Phi^{ij} \mapsto (D_{F\otimes F}(R)\Phi)^{ij} = \mathscr{R}^{ij}_{kl}\Phi^{kl}$$

- (a) Express the matrix components \mathcal{R}_{kl}^{ij} of $D_{F\otimes F}$ in terms of R_j^i . (1 point)
- (b) Consider the following operators acting on \mathbb{R}^9 :

$$(\mathscr{P}_0)^{ij}_{kl} = \frac{1}{3} \delta^{ij} \delta_{kl} ,$$

$$(\mathscr{P}_1)^{ij}_{kl} = \frac{1}{2} \left(\delta^i_k \delta^j_l - \delta^i_l \delta^j_k \right) ,$$

$$(\mathscr{P}_2)^{ij}_{kl} = \frac{1}{2} \left(\delta^i_k \delta^j_l + \delta^i_l \delta^j_k \right) - \frac{1}{3} \delta^{ij} \delta_{kl} .$$

Show that they form a complete set of projection operators on \mathbb{R}^9 , i.e. that $\mathscr{P}_i\mathscr{P}_j=\delta_{ij}\mathscr{P}_i$ and $\sum_i\mathscr{P}_i=\mathbbm{1}$. (5 points)

- (c) Show that $[\mathscr{P}_i, \mathscr{R}] = 0$ for i = 0, 1, 2. (3 points)
- (d) What does $\mathscr{P}_i \not\propto \mathbb{1}$ then imply using Schur's lemma? What information do you get about the spaces projected on? (1.5 points)
- (e) How do the matrices $\mathscr{P}_i\Phi$ look like? What is the dimension of $\mathscr{P}_i\mathbb{R}^9$? (4.5 points)

At the end you should recover the decomposition

$$|l=1\rangle \otimes |l=1\rangle = |l=0\rangle \oplus |l=1\rangle \oplus |l=2\rangle \tag{1}$$

which you should know from angular momentum addition in quantum mechanics.

H 4.2 Representation of S_3 , part 2

(6 points)

Remember last sheet where you constructed a matrix representation of S_3 acting on $\langle v_1 + v_2 + v_3 \rangle^{\perp}$.

- (a) Show the matrix representation you found in H3.2a) is unitary. (1 point)
- (b) Using your basis $\{e_1, e_2\}$ of $\langle v_1 + v_2 + v_3 \rangle^{\perp}$, compute the matrix $A_{ij} = \langle e_i, e_j \rangle_{\mathbb{R}^3}$ where $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ denotes the scalar product in \mathbb{R}^3 which makes $\{v_i\}$ an orthonormal basis. (1 point)
- (c) Show that using A as a scalar product, the representation of S_3 acting on $\langle v_1 + v_2 + v_3 \rangle^{\perp}$, \hat{D} , is a unitary representation, i.e. that

$$\hat{D}(\sigma)A\hat{D}(\sigma)^T = A$$
, for all $\sigma \in S_3$.

(4 points)

H 4.3 Intertwiner

(4 points)

Show that the space of all self-intertwiners of the fundamental representation of SO(2) is isomorphic to \mathbb{C} .