Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

-Home Exercises-

H 5.1 Permutations

(a) Show that the signum defined by

$$
\begin{aligned}
\operatorname{sign}: S_{n} & \longrightarrow\{ \pm 1\} \\
\sigma & \longmapsto \frac{P\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)}{P\left(x_{1}, \ldots, x_{n}\right)}, \quad \text { with } P\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right),
\end{aligned}
$$

is a group homomorphism.
(b) Using that each permutation σ can be written as a composition of transpositions, $\sigma=\tau_{1} \ldots \tau_{r}$, deduce that $\operatorname{sign}(\sigma)=(-1)^{r}$. Deduce that although r is not well defined, we can always say if it is even or odd.
(c) Show that the alternating group, defined as

$$
A_{n}=\left\{\sigma \in S_{n} \mid \operatorname{sign}(\sigma)=1\right\},
$$

is a normal subgroup of S_{n}. What is the order of A_{n} ?
(d) Using the notation

$$
\sigma=\left(\begin{array}{ccc}
1 & \ldots & n \\
\sigma(1) & \ldots & \sigma(n)
\end{array}\right)
$$

show that

$$
\begin{aligned}
& \sigma^{-1}=\left(\begin{array}{ccc}
\sigma(1) & \ldots & \sigma(n) \\
1 & \ldots & n
\end{array}\right), \\
& \left(\begin{array}{ccc}
1 & \ldots & n \\
\sigma(1) & \ldots & \sigma(n)
\end{array}\right)=\left(\begin{array}{ccc}
\pi(1) & \ldots & \pi(n) \\
\sigma(\pi(1)) & \ldots & \sigma(\pi(n))
\end{array}\right), \\
& \sigma \pi \sigma^{-1}=\left(\begin{array}{ccc}
\sigma(1) & \ldots & \sigma(n) \\
\sigma(\pi(1)) & \ldots & \sigma(\pi(n))
\end{array}\right) .
\end{aligned}
$$

(e) What are the conjugacy classes of S_{4} and A_{4} ? How many elements do they have?

H5.2 Cayley's Theorem

(a) Consider a finite group G and the map

$$
\begin{aligned}
\pi: G & \quad S_{n}, \quad n=|G|, \\
& g \longmapsto \pi(g)=\left(\begin{array}{cccc}
e & g_{1} & \ldots & g_{n-1} \\
g & g g_{1} & \ldots & g g_{n-1}
\end{array}\right) .
\end{aligned}
$$

Show that π is a group homomorphism.
(b) Show that π is injective. This implies that G is isomorphic to $\pi(G)$ and thus can be considered as a subgroup of S_{n}.
(c) Show that the action of $\pi(G)$ on an n-element set is regular.
(d) Show that $\pi(g)$ consists of cycles of the length ord (g).
(e) Use this to show that all groups of prime order are cyclic.

H5.3 The Dihedral Group D_{n}

(10 points)
The dihedral group D_{n} is the symmetry group of a regular polygon (see for example figure $1)$ with n sides, including both rotations and reflections.

Figure 1: A regular heptagon with symmetry group D_{7}.
(a) Each element of D_{n} can be generated as a combination of two basic operations denoted by r and b. What are these two operations? What are their orders?
(b) Prove the relation $b r=r^{-1} b$.

Now we look at the case $n=4$, i.e. the symmetry group of a plain square.
(c) Find the elements of D_{4} and determine the group multiplication table.
(d) Identify the conjugacy classes and subgroups.

Hint: There are 5 conjugacy classes.
(e) What are the normal subgroups? Determine the quotient groups.

