Exercises on Group Theory

Priv.-Doz. Dr. Stefan Förste

As we have seen in the lecture, a continuous group G is a Lie group if it also has the structure of a differentiable manifold and fulfills the requirement, that the map

$$
\begin{aligned}
& G \times G \longrightarrow G \\
& \left(g_{1}, g_{2}\right) \longmapsto g_{1} g_{2}^{-1}
\end{aligned}
$$

is smooth.
The Lie algebra \mathfrak{g} of G is the space of left-invariant vector fields with the Lie bracket as product. Note that for Lie groups, the left-invariant vector fields are in one-to-one correspondence with the tangent vectors at the unit element. Hence the elements of the Lie algebra can be written in the form

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} g(t)\right|_{t=0},
$$

where

$$
\begin{aligned}
g:[0,1] & \longrightarrow G \\
t & \longmapsto g(t)
\end{aligned}
$$

is a curve, fulfilling $g(0)=e$. For matrix groups such a curve can be expanded as

$$
g(t)=e+t B+\mathcal{O}\left(t^{2}\right)
$$

and we find that B is the corresponding element of the Lie algebra.

-Home Exercises-

H 9.1 Normal discrete subgroups of Lie groups
Show that if a Lie group G has a discrete normal subgroup $N \triangleleft G$, then N lies in the center of G.

H 9.2 $S O(3)$ geometry
(a) Show that each $O \in S O(3)$ has an eigenvector with eigenvalue one. This allows us to parametrize $S O(3)$ with a unit vector \hat{n} and a rotation angle α. Show that $S O(3)$ can be parametrized by a three-dimensional ball with opposite points identified on the boundary.
(b) Show that $S O(3)$ is not simply connected, i.e. there exists a closed cycle which is not contractible.
(1 point)
(c) Show that the Lie-algebra $\mathfrak{s o}(3)$ is the vector space of antisymmetric matrices. Use the basis

$$
\left(L_{i}\right)_{j k}=\epsilon_{i j k}, \quad i=1, \ldots, 3
$$

to show the commutator

$$
\left[L_{i}, L_{j}\right]=\epsilon_{i j k} L_{k}
$$

H 9.3 Algebraic equivalence of $S O(3)$ and $S U(2)$
(a) Consider the set of Hermitean traceless 2×2 matrices.

$$
\begin{equation*}
A=\left\{m \in \mathbb{C}^{2 \times 2} \mid \operatorname{tr} m=0, m=m^{\dagger}\right\} \tag{1}
\end{equation*}
$$

First show that the Pauli matrices form a basis of A. Thus for $m \in A$ we can write $m=m_{i} \sigma_{i}$ with,

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

(2 points)
(b) Show that for $U \in S U(2)$ and $m \in A$ we have $U^{\dagger} m U=n \in A$. This allows us to define a map

$$
\begin{aligned}
\omega: S U(2) & \longrightarrow \operatorname{Aut}\left(\mathbb{R}^{3}\right) \\
U & \longmapsto \omega(U)
\end{aligned}
$$

such that $n_{i}=\omega(U)_{i j} m_{j}$. Deduce the formula $\omega(U)_{i j}=\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U^{\dagger} \sigma_{j} U\right)$.
(c) Show that ω is a homomorphism, i.e. $\omega(U V)_{i k}=\omega(U)_{i j} \omega(V)_{j k}$.
(d) Show that $\omega(U)_{i j}=\omega(U)_{j i}^{-1}$. This implies $\omega(U) \in O(3)$.
(e) Use the connectedness of $S U(2)$ to argue that $\operatorname{det}(\omega(U))=+1$, i.e. $\omega(U) \in S O(3)$. (1 point)
(f) Show that the Lie-algebra $\mathfrak{s u}(2)$ is equal to A as a vector space.
(g) Show that $\mathfrak{s u}(2)$ is isomorphic to $\mathfrak{s o}(3)$ as Lie-algebras.

This already shows that there is a geometrical connection between $S O(3)$ and $S U(2)$. We will investigate this further on the next sheet.

H 9.4 Lie Bracket

Here we consider general differentiable manifolds and use the coordinate basis.
(a) Show that a vector field $X=X^{i}(x) \partial_{i}$ is invariant under local coordinate transformations.
(1 point)
(b) Show that for two vector fields X and Y the product $X^{i} \partial_{i} Y^{j} \partial_{j}$ is not invariant under local coordinate transformations.
(2 points)
(c) Show that the Lie bracket $\mathcal{L}[X, Y]$ is invariant under local coordinate transformations. Hint: Write the transformation matrix in terms of the old and new coordinates.

