Klassische Theoretische Physik II: Elektrodynamik (WiSe
2025/26) 10. Ubungszettel (10. Dezember 2025)

Abgabe der Hausaufgaben bis: Mittwoch, 7. Januar.

1 Prasenzaufgaben

1.1 Quickies

Ab jetzt werden die Ubungszettel regelmiBig Kurzfragen (“Quickies”) enthalten; auch
in den Abschlussklausuren werden solche Fragen vorkommen, und ca. 25% der gesam-
ten Punktzahl ausmachen. Hier wird grundlegendes Faktenwissen abgefragt, sowie einige
sehr kurze Herleitungen.

Q1: Wie lauten die Maxwell-Gleichungen in Integralform?

Q2: Wie héngt die Energiedichte einer ebenen elektromagnetischen Welle von ihrer Am-
plitude Ey ab? Hinweis: Gefragt ist die funktionale Form, nicht der Vorfaktor.

Q3: Wie lautet die Beziehung zwischen der Frequenz w (genauer: w = 27 f, wobei f die
Frequenz ist) und dem Betrag des Wellenvektors |k|? Und was ist die Beziehung

zwischen |k| und der Wellenlsinge \? Hinweis: Fiir eine eindimensionale ebene Welle
f(z,t) ist A der kleinste Wert, der f(z,t) = f(x + A, t) Vt erfiillt.

1.2 Retardierte Potenziale und Lorentz—Eichung
In der Vorlesung hatten wir gesehen, dass Gln.(4.19) die Maxwell-Gleichungen erfiillt,

wenn man diese mit Hilfe der Lorentz—Eichung in die Form (4.18) bringt. Wir hatten aber

noch nicht gezeigt, dass (4.19) auch die Lorentz-Bedingung V- /TL(F, t) = —uoeoaULa—iF’t)

erfiillt.
1. Zeigen Sie zunéchst, dass fiir eine beliebige (differenzierbare) skalare Funktion f gilt:
Vo f (7 =) = =V f(7 =), (1)

d.h. die Ableitungen beziiglich 7 und beziiglich #" unterscheiden sich lediglich um ein
Vorzeichen, falls die abzuleitende Funktion nur vom Abstand |7 — 7| abhéngt.

2. Benutzen Sie die Produktregel (M2.14) aus der Vorlesung,

V- [JOV ] = 1OV V@ + V) -V,

—_



um zu zeigen, dass

-

= ](7?/7157“) 1 VAR = Zi=
Vr : |F—F’| == |’F—F’| Vr 'j(T/,tT) +VTI ‘](T/,tr)] —

Dabei hingt die retardierte Zeit t, =t — |7 — 7| /c vom Abstand | — 7’| ab.

3. Benutzen Sie die Kontinuitéitsgleichung V, - j(7') = —dp(7’)/0t, die fiir feste Zeit
gilt (d.h. ¢, wird fest gehalten), und Gl.(1), um zu zeigen, dass

Op(r, 1)

ﬁ?“’ : j(FlatT‘) = _61“ ' E(Fla tr) - ot . (3)

4. Die gesuchte Bezichung (Lorentz—Bedingung) folgt, wenn Sie Gln.(2) und (3) zur Be-
rechnung von V,- A (7, t) benutzen. Dabei muss das Integrationsvolumen hinreichend
grofl gewaehlt werden, sodass der Randterm verschwindet. (Das ist keine zusétzliche
Bedingung, da in Gln.(4.19) ohnehin iiber das gesamte Volumen integriert werden
muss, in dem p bzw. jnicht verschwinden.)

2 Hausaufgaben

Diese fallen diesmal etwas lénger aus, damit Sie sich iiber die lange vorlesungsfreie Zeit
nicht zu sehr langweilen.

2.1 Biot—Savart Gesetz

Wir hatten in der Vorlesung fiir stationédre Strome das Biot—Savart Gesetz hergeleitet, s.

GlL.(2.8):

3o [ s d(F7) X (T =)

Bwy_/dw PR (4)
Leiten Sie dies aus dem statischen Grenzfall der allgemeinen Losung fiir das Vektorpotenzial
in Lorentz-Eichung her, G1.(4.19b):

A(F) = / a2 (5)

=7

Hinweis: Sie bendtigen die Produktregel (M2.16) aus der Vorlesung. Die Ableitung, die
B(7) mit A(7) in Verbindung setzt, wirkt nur auf 7, nicht auf 7’; deshalb trégt nur ein
Term aus der Produktregel bei. [4P]



2.2 Energie eines Wellenpakets

In dieser Aufgabe wollen wir die Energie eines Wellenpakets berechnen. Wir beschrénken
uns auf den Beitrag des elektrischen Feldes, da wir bereits gesehen hatten, dass fiir je-
de Mode das elektrische und magnetische Feld gleichermaflen beitragen, d.h. die gesamte
Energie eines elektromagnetischen Wellenpakets ergibt sich durch Multiplikation mit 2.

Ausgangspunkt ist der Ausdruck fiir das elektrische Feld im Wellenpaket, s. G1.(4.8)
aus der Vorlesung:

fim) = e | [ st ] .

mit Ey - k = 0 und w = ¢|k|, wobei ¢ = 1/,/eopig die Lichtgeschwindigkeit im Vakuum ist.
Wir wollen die Energie berechnen, die dieses Feld tragt, s. G1.(3.27) aus der Vorlesung:

= [erEGoP. (7)

1. Eine relativ einfache Rechenmethode betrachtet das elektrische Feld E als konzplea:e
Grofe, d.h. der Re in G1.(6) wird weg gelassen, und in G1.(7) ersetzt man |E|> =
$E - E*. Warum ist der Faktor 1/2 notwendig? [1P]

2. Benutzen Sie nun diesen Ansatz, um zu zeigen, dass

2

£ = 47r350/d3k; ‘EO(E)

(8)

Hinwets: Beachten Sie,_' dass zunéchst eine dreifache Integration, iiber unabhéngige
Wellenvektoren & und k' und iiber 7, notwendig ist, und benutzen Sie Gl.(M5.9) aus
der Vorlesung! [3P]

3. Interpretieren Sie das Ergebnis (8). [2P]

4. Die Notwendigkeit des Faktors 1/2 in der ersten Teilaufgabe kann man natiirlich
auch streng herleiten, indem man GIL.(6) in G1.(7) einsetzt. Fiihren Sie diese (etwas
langliche) Rechnung aus. Hinweis: Da die (drei-dimensionale) Integrationsvariable k
in G1.(6) reell ist, kann man den Realteil in das Integral ziehen. Der Integrand selber
ist aber ein Produkt zweier komplexer Faktoren; das Realteil des Produkts hat zwei
Terme, wenn ausgedriickt durch die Real- und Imaginérteile der Faktoren. Um wie-
der GL.(M5.9) ausnutzen zu konnen, miissen Sie die Sinus— und Kosinusfunktionen,
die dabei entstehen, wieder als Summe bzw. Differenz von komplexen e-Funktionen
ausdriicken. Das generiert zunéchst 16 Terme, auf die jeweils G1.(M5.9) angewandt
werden kann. Manche dieser Terme verschwinden idgntisch Bach d3r Integration; vie-

le weitere verschwinden, wenn man annimmt, dass Ey(k) - E,(—k) = 0 (warum sollte
das zutreffen fiir ein Wellenpaket?), oder wenn man iiber die Zeit mittelt. [5P]



2.3 Klassisches Atom

In der Vorlesung wurde gezeigt, dass ein klassisches Modell eines Wasserstoff-Atoms (ein
Elektron umkreist einen Kern) im Bruchteil einer Nanosekunde seine Energie durch Ab-
strahlung verliert, d.h. das Elektron stiirzt in den Kern. Hier wollen wir einige Schritte
dieser Rechnung reproduzieren.

1. Zeigen Sie, dass fiir ein Elektron auf einer Kreisbahn in einem attraktiven 1/r Po-
tenzial, By, = —Epot/2. Hinweis: Benutzen Sie Newton’sche Mechanik! [2P]

2. Benutzen Sie dieses Ergebnis, sowie die numerischen Werte von ¢y, Gl.(1.3a), und
fir die Elementarladung e = 1.6 - 107! C, um zu zeigen, dass fiir einen Bahnradius
r = 10719 m die Bahngeschwindigkeit v ~ 0.01 ¢, wie in der Vorlesung angenommen;
dabei ist ¢ = 3 - 10® m/s die Lichtgeschwindigkeit im Vakuum. Hinweis: Die GroBe
eines Atoms war zu Beginn des 20. Jahrhunderts bereits ndherungsweise bekannt; die
Tatsache, dass Atomkerne sehr viel kleiner sind als Atome, wurde von Rutherford
1910 gezeigt. Das Problem der radiativen Instabilitit des klassichen Atoms wurde
provisorisch in Bohrs Atommodell gelost (1914), in voller Strenge erst nach Entwick-
lung der Quantenmechani (1925). [2P]

2.4 Bonus-Aufgabe: Feld einer gleichformig bewegten Punktla-
dung

Hinweis: Bei der Berechnung des Bruchteils der Hausaufgaben, die Sie gelost haben, zéhlt
diese Aufgabe nur im Zéhler, nicht im Nenner.

In dieser Aufgabe wollen wir uns das elektrische und magnetische Feld einer gleichférmig
bewegten Punktladung anschauen. Die Ladungsdichte ist gegeben durch

p(7. 1) = QOO (7 — ait), (9)

mit konstanter Geschwindigkeit ¢. In G1.(9) haben wir den Ursprung des Koordinatensy-
stems so gewéhlt, dass sich die Punktladung zur Zeit ¢ = 0 am Ursprung befindet; die
Bahnkurve des Teilchens in diesem Bezugssystem ist also

F(t) = t7. (10)

Wir wollen zeigen, dass die Existenz eines von Null verschiedenen Vektorpotenzials, und
somit auch eines magnetischen Feldes, vom Inertialsystem abhéngt.

1. Da v konstant ist, ldsst sich ein Inertialsystem finden, in dem sich die Punktladung
nicht bewegt. Wie hdngt der Ortsvektor R in diesem System mit dem urspriinglichen
Ortsvektor 7 zusammen? (Diese “Gallilei Transformation” sollten Thnen eigentlich
aus der theoretischen Mechanik bekannt sein.) Hinweis: Zur Zeit t = 0 sollen beide
Koordinatensysteme den gleichen Ursprung haben. [1P]



2. Wie sehen die Potenziale UL (R, t), Ap(R,t) in diesen “mitbewegten” Koordinaten
aus? Hinweis: Die Antwort ist fast trivial. [2P]

3. Nun gehen wir zuriick ins urspriingliche System, in dem die Punktladung sich bewegt.
Berechnen Sie das skalare Potenzial in Lorentz Eichung UL (7,t) in diesem System.
Benutzen Sie dazu Gl.(4.19a) aus der Vorlesung. Allerdings ist die Auflésung der
0— “Funktion” hier etwas trickreich, da die retardierte Zeit ¢, auch von der Integrati-
onsvariable 7/ abhiingt. Das 3-dimensionale Aquivalent von ¢'(z,) in GL.(M5.7), das
bei der Integration von 6(g(x)) eine Rolle spielt, ist 1 — lz I 1 Zeigen Sie, dass

das skalare Potenzial deshalb geschrieben werden kann als

0 1

T e |[F— 0] — 0 (F—t,0)/c

=TT

(11)

[3P]
4. Zeigen Sie, dass im gleichen Bezugssystem,
AL(F,t) = BUL(F 1) /. (12)
Hinweis: Benutzen Sie Gln.(4.19b), (4.5) und (1.5) aus der Vorlesung! [2P]

5. Welche (mehr oder weniger) direkt messbare Grfie, die aus E und B berechnet werden
kann, sollte in allen Inertialsystemen den gleichen Wert haben? (Um das explizit zu

zeigen, miissten wir E und B berechnen, was ebenfalls nicht ganz trivial ist, da ¢,
von 7 abhéngt.) [1P]

1Um das zu sehen, schreiben Sie das Argument der §— “Funktion” als 7' — 3t + &/(F —7) - (F — 77'),
und leiten Sie nach 7 ab.



