
Klassische Theoretische Physik II: Elektrodynamik (WiSe
2025/26) 10. Übungszettel (10. Dezember 2025)

Abgabe der Hausaufgaben bis: Mittwoch, 7. Januar.

1 Präsenzaufgaben

1.1 Quickies

Ab jetzt werden die Übungszettel regelmäßig Kurzfragen (“Quickies”) enthalten; auch
in den Abschlussklausuren werden solche Fragen vorkommen, und ca. 25% der gesam-
ten Punktzahl ausmachen. Hier wird grundlegendes Faktenwissen abgefragt, sowie einige
sehr kurze Herleitungen.

Q1: Wie lauten die Maxwell-Gleichungen in Integralform?

Q2: Wie hängt die Energiedichte einer ebenen elektromagnetischen Welle von ihrer Am-
plitude E⃗0 ab? Hinweis: Gefragt ist die funktionale Form, nicht der Vorfaktor.

Q3: Wie lautet die Beziehung zwischen der Frequenz ω (genauer: ω = 2πf , wobei f die

Frequenz ist) und dem Betrag des Wellenvektors |⃗k|? Und was ist die Beziehung

zwischen |⃗k| und der Wellenlänge λ? Hinweis: Für eine eindimensionale ebene Welle
f(x, t) ist λ der kleinste Wert, der f(x, t) = f(x+ λ, t) ∀t erfüllt.

1.2 Retardierte Potenziale und Lorentz–Eichung

In der Vorlesung hatten wir gesehen, dass Gln.(4.19) die Maxwell–Gleichungen erfüllt,
wenn man diese mit Hilfe der Lorentz–Eichung in die Form (4.18) bringt. Wir hatten aber

noch nicht gezeigt, dass (4.19) auch die Lorentz–Bedingung ∇⃗ · A⃗L(r⃗, t) = −µ0ϵ0
∂UL(r⃗,t)

∂t

erfüllt.

1. Zeigen Sie zunächst, dass für eine beliebige (differenzierbare) skalare Funktion f gilt:

∇⃗rf(|r⃗ − r⃗ ′|) = −∇⃗r′f(|r⃗ − r⃗ ′|) , (1)

d.h. die Ableitungen bezüglich r⃗ und bezüglich r⃗ ′ unterscheiden sich lediglich um ein
Vorzeichen, falls die abzuleitende Funktion nur vom Abstand |r⃗ − r⃗ ′| abhängt.

2. Benutzen Sie die Produktregel (M2.14) aus der Vorlesung,

∇⃗ ·
[
f(r⃗)V⃗ (r⃗)

]
= f(r⃗)∇⃗ · V⃗ (r⃗) + V⃗ (r⃗) · ∇⃗f(r⃗) ,
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um zu zeigen, dass

∇⃗r ·
j⃗(r⃗ ′, tr)

|r⃗ − r⃗ ′|
=

1

|r⃗ − r⃗ ′|

[
∇⃗r · j⃗(r⃗ ′, tr) + ∇⃗r′ · j⃗(r⃗ ′, tr)

]
− ∇⃗r′ ·

j⃗(r⃗ ′, tr)

|r⃗ − r⃗ ′|
. (2)

Dabei hängt die retardierte Zeit tr = t− |r⃗ − r⃗ ′|/c vom Abstand |r⃗ − r⃗ ′| ab.

3. Benutzen Sie die Kontinuitätsgleichung ∇⃗r′ · j⃗(r⃗ ′) = −∂ρ(r⃗ ′)/∂t, die für feste Zeit
gilt (d.h. tr wird fest gehalten), und Gl.(1), um zu zeigen, dass

∇⃗r′ · j⃗(r⃗ ′, tr) = −∇⃗r · j⃗(r⃗ ′, tr)−
∂ρ(r⃗ ′, tr)

∂t
. (3)

4. Die gesuchte Beziehung (Lorentz–Bedingung) folgt, wenn Sie Gln.(2) und (3) zur Be-

rechnung von ∇⃗r ·A⃗L(r⃗, t) benutzen. Dabei muss das Integrationsvolumen hinreichend
groß gewaehlt werden, sodass der Randterm verschwindet. (Das ist keine zusätzliche
Bedingung, da in Gln.(4.19) ohnehin über das gesamte Volumen integriert werden
muss, in dem ρ bzw. j⃗ nicht verschwinden.)

2 Hausaufgaben

Diese fallen diesmal etwas länger aus, damit Sie sich über die lange vorlesungsfreie Zeit
nicht zu sehr langweilen.

2.1 Biot–Savart Gesetz

Wir hatten in der Vorlesung für stationäre Ströme das Biot–Savart Gesetz hergeleitet, s.
Gl.(2.8):

B⃗(r⃗) =

∫
d3r′

j⃗(r⃗ ′)× (r⃗ − r⃗ ′)

|r⃗ − r⃗ ′|3
. (4)

Leiten Sie dies aus dem statischen Grenzfall der allgemeinen Lösung für das Vektorpotenzial
in Lorentz–Eichung her, Gl.(4.19b):

A⃗(r⃗) =

∫
d3r′

j⃗(r⃗ ′)

|r⃗ − r⃗ ′|
. (5)

Hinweis: Sie benötigen die Produktregel (M2.16) aus der Vorlesung. Die Ableitung, die

B⃗(r⃗) mit A⃗(r⃗) in Verbindung setzt, wirkt nur auf r⃗, nicht auf r⃗ ′; deshalb trägt nur ein
Term aus der Produktregel bei. [4P]
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2.2 Energie eines Wellenpakets

In dieser Aufgabe wollen wir die Energie eines Wellenpakets berechnen. Wir beschränken
uns auf den Beitrag des elektrischen Feldes, da wir bereits gesehen hatten, dass für je-
de Mode das elektrische und magnetische Feld gleichermaßen beitragen, d.h. die gesamte
Energie eines elektromagnetischen Wellenpakets ergibt sich durch Multiplikation mit 2.

Ausgangspunkt ist der Ausdruck für das elektrische Feld im Wellenpaket, s. Gl.(4.8)
aus der Vorlesung:

E⃗(r⃗, t) = Re

[∫
d3k ⃗̃E0(k⃗)e

i(k⃗·r⃗−ωt)

]
, (6)

mit ⃗̃E0 · k⃗ = 0 und ω = c|⃗k|, wobei c = 1/
√
ϵ0µ0 die Lichtgeschwindigkeit im Vakuum ist.

Wir wollen die Energie berechnen, die dieses Feld trägt, s. Gl.(3.27) aus der Vorlesung:

E =
ϵ0
2

∫
d3r|E⃗(r⃗, t)|2 . (7)

1. Eine relativ einfache Rechenmethode betrachtet das elektrische Feld E⃗ als komplexe
Größe, d.h. der Re in Gl.(6) wird weg gelassen, und in Gl.(7) ersetzt man |E⃗|2 =
1
2
E⃗ · E⃗ ∗. Warum ist der Faktor 1/2 notwendig? [1P]

2. Benutzen Sie nun diesen Ansatz, um zu zeigen, dass

E = 4π3ϵ0

∫
d3k

∣∣∣ ⃗̃E0(k⃗)
∣∣∣2 . (8)

Hinweis: Beachten Sie, dass zunächst eine dreifache Integration, über unabhängige
Wellenvektoren k⃗ und k⃗ ′ und über r⃗, notwendig ist, und benutzen Sie Gl.(M5.9) aus
der Vorlesung! [3P]

3. Interpretieren Sie das Ergebnis (8). [2P]

4. Die Notwendigkeit des Faktors 1/2 in der ersten Teilaufgabe kann man natürlich
auch streng herleiten, indem man Gl.(6) in Gl.(7) einsetzt. Führen Sie diese (etwas

längliche) Rechnung aus. Hinweis: Da die (drei-dimensionale) Integrationsvariable k⃗
in Gl.(6) reell ist, kann man den Realteil in das Integral ziehen. Der Integrand selber
ist aber ein Produkt zweier komplexer Faktoren; das Realteil des Produkts hat zwei
Terme, wenn ausgedrückt durch die Real– und Imaginärteile der Faktoren. Um wie-
der Gl.(M5.9) ausnutzen zu können, müssen Sie die Sinus– und Kosinusfunktionen,
die dabei entstehen, wieder als Summe bzw. Differenz von komplexen e–Funktionen
ausdrücken. Das generiert zunächst 16 Terme, auf die jeweils Gl.(M5.9) angewandt
werden kann. Manche dieser Terme verschwinden identisch nach d3r Integration; vie-

le weitere verschwinden, wenn man annimmt, dass ⃗̃E0(k⃗) · ⃗̃Eo(−k⃗) = 0 (warum sollte
das zutreffen für ein Wellenpaket?), oder wenn man über die Zeit mittelt. [5P]
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2.3 Klassisches Atom

In der Vorlesung wurde gezeigt, dass ein klassisches Modell eines Wasserstoff–Atoms (ein
Elektron umkreist einen Kern) im Bruchteil einer Nanosekunde seine Energie durch Ab-
strahlung verliert, d.h. das Elektron stürzt in den Kern. Hier wollen wir einige Schritte
dieser Rechnung reproduzieren.

1. Zeigen Sie, dass für ein Elektron auf einer Kreisbahn in einem attraktiven 1/r Po-
tenzial, Ekin = −Epot/2. Hinweis: Benutzen Sie Newton’sche Mechanik! [2P]

2. Benutzen Sie dieses Ergebnis, sowie die numerischen Werte von ϵ0, Gl.(1.3a), und
für die Elementarladung e = 1.6 · 10−19 C, um zu zeigen, dass für einen Bahnradius
r = 10−10 m die Bahngeschwindigkeit v ≃ 0.01 c, wie in der Vorlesung angenommen;
dabei ist c = 3 · 108 m/s die Lichtgeschwindigkeit im Vakuum. Hinweis: Die Größe
eines Atoms war zu Beginn des 20. Jahrhunderts bereits näherungsweise bekannt; die
Tatsache, dass Atomkerne sehr viel kleiner sind als Atome, wurde von Rutherford
1910 gezeigt. Das Problem der radiativen Instabilität des klassichen Atoms wurde
provisorisch in Bohrs Atommodell gelöst (1914), in voller Strenge erst nach Entwick-
lung der Quantenmechani (1925). [2P]

2.4 Bonus-Aufgabe: Feld einer gleichförmig bewegten Punktla-
dung

Hinweis: Bei der Berechnung des Bruchteils der Hausaufgaben, die Sie gelöst haben, zählt
diese Aufgabe nur im Zähler, nicht im Nenner.

In dieser Aufgabe wollen wir uns das elektrische und magnetische Feld einer gleichförmig
bewegten Punktladung anschauen. Die Ladungsdichte ist gegeben durch

ρ(r⃗, t) = Qδ(3)(r⃗ − v⃗t) , (9)

mit konstanter Geschwindigkeit v⃗. In Gl.(9) haben wir den Ursprung des Koordinatensy-
stems so gewählt, dass sich die Punktladung zur Zeit t = 0 am Ursprung befindet; die
Bahnkurve des Teilchens in diesem Bezugssystem ist also

r⃗(t) = tv⃗ . (10)

Wir wollen zeigen, dass die Existenz eines von Null verschiedenen Vektorpotenzials, und
somit auch eines magnetischen Feldes, vom Inertialsystem abhängt.

1. Da v⃗ konstant ist, lässt sich ein Inertialsystem finden, in dem sich die Punktladung
nicht bewegt. Wie hängt der Ortsvektor R⃗ in diesem System mit dem ursprünglichen
Ortsvektor r⃗ zusammen? (Diese “Gallilei Transformation” sollten Ihnen eigentlich
aus der theoretischen Mechanik bekannt sein.) Hinweis: Zur Zeit t = 0 sollen beide
Koordinatensysteme den gleichen Ursprung haben. [1P]
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2. Wie sehen die Potenziale UL(R⃗, t), A⃗L(R⃗, t) in diesen “mitbewegten” Koordinaten
aus? Hinweis: Die Antwort ist fast trivial. [2P]

3. Nun gehen wir zurück ins ursprüngliche System, in dem die Punktladung sich bewegt.
Berechnen Sie das skalare Potenzial in Lorentz Eichung UL(r⃗, t) in diesem System.
Benutzen Sie dazu Gl.(4.19a) aus der Vorlesung. Allerdings ist die Auflösung der
δ−“Funktion” hier etwas trickreich, da die retardierte Zeit tr auch von der Integrati-
onsvariable r⃗ ′ abhängt. Das 3–dimensionale Äquivalent von g′(x0) in Gl.(M5.7), das
bei der Integration von δ(g(x)) eine Rolle spielt, ist 1 − v⃗

c
· r⃗−r⃗ ′

|r⃗−r⃗ ′| .
1 Zeigen Sie, dass

das skalare Potenzial deshalb geschrieben werden kann als

UL(r⃗, t) =
Q

4πϵ0

1

|r⃗ − trv⃗| − v⃗ · (r⃗ − trv⃗)/c
. (11)

[3P]

4. Zeigen Sie, dass im gleichen Bezugssystem,

A⃗L(r⃗, t) = v⃗UL(r⃗, t)/c
2 . (12)

Hinweis: Benutzen Sie Gln.(4.19b), (4.5) und (1.5) aus der Vorlesung! [2P]

5. Welche (mehr oder weniger) direkt messbare Grß̈e, die aus E⃗ und B⃗ berechnet werden
kann, sollte in allen Inertialsystemen den gleichen Wert haben? (Um das explizit zu

zeigen, müssten wir E⃗ und B⃗ berechnen, was ebenfalls nicht ganz trivial ist, da tr
von r⃗ abhängt.) [1P]

1Um das zu sehen, schreiben Sie das Argument der δ−“Funktion” als r⃗ ′ − v⃗t + v⃗
c

√
(r⃗ − r⃗ ′) · (r⃗ − r⃗ ′),

und leiten Sie nach r⃗ ′ ab.
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