
Klassische Theoretische Physik II: Elektrodynamik (WiSe
2025/26) 13. Übungszettel (21. Januar 2026)

Abgabe der Hausaufgaben bis: Mittwoch, 28. Januar.

1 Präsenzaufgaben

1.1 Quickies

Ab jetzt werden die Übungszettel regelmäßig Kurzfragen (“Quickies”) enthalten; auch
in den Abschlussklausuren werden solche Fragen vorkommen, und ca. 25% der gesam-
ten Punktzahl ausmachen. Hier wird grundlegendes Faktenwissen abgefragt, sowie einige
sehr kurze Herleitungen.

Q1: Was ist die relativistische kinetische Energie eines Teilchens mit Masse m, das sich
mit Geschwindigkeit v⃗ bewegt?

Q2: Seien a und b zwei Vierervektoren. Wie ist das relativistische Skalarprodukt a · b
definiert, und wie verhält sich dieses Produkt unter einer Lorentz–Transformation?

Q3: Was sind “zeitartige”, “raumartige” und “lichtartige” Vierervektoren?

1.2 Relativistische Kinematik

1. Am Large Hadron Collider (LHC) am CERN werden Protonen auf Energien nahe 8
TeV (= 8 · 103 GeV) beschleunigt; ihre Ruhemasse beträgt mpc

2 = 0.94 GeV. Wie
nahe kommen diese Protonen der Lichtgeschwindigkeit, d.h. was ist 1− |v⃗p|/c?

2. In der Vorlesung wurden Myonen erwähnt, die durch Wechselwirkungen der Primär-
teilchen der kosmischen Strahlung produziert werden und nur mittels der Zeitdila-
tation die Erdoberfläche erreichen. Myonen haben noch schwerere Geschwister, die
τ−Leptonen; diese wechselwirken sehr ähnlich wie die Myonen (und Elektronen),
haben aber eine etwa 17 mal größere Masse (mτc

2 ≃ 1.78 GeV), und eine sehr viel
kürzere Lebenszeit (ττ ≃ 0.3 · 10−12 s). Berechnen Sie die Strecke, die ein τ−Lepton
im Mittel zurück legt ehe es zerfällt. Wie hoch muss die Energie Eτ sein, damit ein
τ−Lepton im Mittel 50 m zurück legt? Bemerkung: Die Produktion von τ−Leptonen,
die vor ihrem Zerfall mindestens einige Dutzend Meter zurück legen, führt zu einer
“double bang” Signatur, da sowohl bei der Produktion des τ−Leptons als auch beim
Zerfall Energie in Form anderer, stark wechselwirkender Teilchen deponiert wird.
Diese Signatur wurde 2019 erstmals vom IceCube Experiment nachgewiesen, das in
das antarktische Eis (buchstäblich am Südpol) eingebettet ist.
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1.3 Kausalität I

Gegeben sei ein Beobachter, der im Ursprung eines Inertialsystems ruht, und sich smoit
im Minkowski–Raum entlang der ct−Achse bewegt. (Diese Ergebnisse gelten in guter
Näherung auch für Beobachter, die sich mit Geschwindigkeit v ≪ c relativ zum Ursprung
bewegen.)

1. Skizzieren Sie (graphisch) den vergangenen und den zukünftigen Lichtkegel für diesen
Beobachter, bei Zeit t = 0.

2. Zeigen Sie graphisch, dass der vergangene Lichtkegel dieses Beobachters in Zukunft
größer sein wird als er jetzt ist, sodass in hinreichend ferner Zukunft alle Ereignisse
[d.h. Punkte (ct, r⃗) im Minkowski–Raum] im vergangenen Lichtkegel dieses Beobach-
ters sein werden (wobei in hinreichend ferner Zukunft dieser Beobachter wohl nicht
mehr am Leben sein wird; dieser Effekt soll hier vernachlässigt werden).

3. Zeigen Sie graphisch, dass der zukünftige Lichtkegel dieses Beobachters in Zukunft
kleiner sein wird, d.h. Ereignisse, die er jetzt nicht (mehr) beeinflussen kann wird er
auch in Zukunft nicht beeinflussen können.

2 Hausaufgaben

2.1 Addition der Geschwindigkeiten

In der Vorlesung hatten wir gesehen, dass sich Geschwindigkeiten unter einem Boost in
z−Richtung wie folgt transformieren, s. Gln.(5.21):

vz =
v′z + v0

1 + v0v′z/c
2
; v⃗⊥ =

v⃗ ′
⊥

γ(v0) [1 + v0v′z/c
2]
. (1)

Dabei ist v0 die Relativgeschwindigkeit zwischen den beiden Inertialsystemen.

1. In der Vorlesung wurde gezeigt, dass für v0 < c und |v⃗ ′| < c auch |v⃗| < c gilt. Zeigen
Sie nun, dass für |v⃗ ′| = c auch |v⃗| = c gilt, unabhängig von v0. Hinweis: Spalten Sie
v⃗ ′ wieder in einen longitudinalen und einen transversalen Anteil, |v′z| = c cos θ und
|v⃗ ′

⊥| = c sin θ mit θ ∈ [0, π]. [4P]

2. In der Vorlesung wurde folgende Identität hergeleitet, s. Gl.(5.24):

γ(v) = γ(v0)γ(v
′)

(
1 +

v0v
′
z

c2

)
. (2)

Zeigen Sie mittels Gln.(1) und der Definition γ(v) = 1/
√

1− v2/c2, dass Gl.(2) in
der Tat gilt. Hinweis: Spalten Sie v⃗ ′ wie in der vorigen Teilaufgabe auf, wobei nun
allerdings der Betrag v′ < c. [4P]
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2.2 Kausalität II

In dieser Aufgabe betrachten wir die verschiedenen Kausalitätsregionen algebraisch, nicht
geometrisch. Zunächst definieren wir die zukünftigen und vergangenen Lichtkegel relativ
zu einem Punkt xµ = (ct, r⃗):
Zukünftiger Lichtkegel: Menge aller x′ = (ct′, r⃗ ′) mit (x − x′)2 ≡ (xµ − x′

µ)(x
µ − x′µ) > 0

(Summenkonvention!) und t′ > t;
Vergangener Lichtkegel: Menge aller x′ = (ct′, r⃗ ′) mit (x− x′)2 > 0 und t′ < t.
Alle x′

µ mit raumartigen Abstand zu xµ sind außerhalb beider Lichtkegel. (Anmerkung: xµ

und x′
µ beziehen sich hier auf zwei verschiedene Raum-Zeit Punkte, oder Ereignisse, im

gleichen Inertialsystem!)

1. Zeigen Sie zunächst, dass dies für xµ = 0 (dem Ursprung) der geometrischen Defini-
tion entspricht. [1P]

2. Nun betrachten wir einen Punkt x′
µ der zur Zeit t = 0 außerhalb des Lichtkegels eines

Beobachters am Ursprung liegt, mit t′ > 0. Dieser Beobachter soll sich mit (positiver)
Geschwindigkeit v entlang der x−Achse bewegen, d.h. xµ(t) = (ct, vt, 0, 0), wobei wir
auch t < 0 betrachten. Zeigen Sie, dass für t → −∞ der Punkt x′

µ im zukünftigen
Lichtkegel dieses Beobachters lag, und dass für t → ∞ der Punkt x′

µ im vergangenen
Lichtkegel dieses Beobachters liegen wird. Hinweis: Die notwendigen Bedingungen
auf die relativen Zeitkoordinaten gelten offensichtlich in diesen beiden Grenzfällen;
zu zeigen ist also nur, dass xµ(t)− x′

µ in beiden Fällen zeitartig ist. [2P]

3. Zeigen Sie, dass der Punkt x′
µ einen Lichtkegel des bewegten Beobachters zu den

Zeiten

tL± =
1

c2 − v2

[
c2t′ − x′v ±

√
c2 (x′ − vt′)2 + (c2 − v2) (y′2 + z′2)

]
(3)

kreuzt. Hinweis: Der Abstand zwischen xµ und x′
µ muss bei t = tL± lichtartig sein!

[4P]

4. Zeigen Sie, dass tL− < 0 wenn x′
µ raumartig zum Ursprung des Minkowskiraums

liegt, wie hier angenommen. Was ist die Interpretation von tL−? [3P]

5. Zeigen Sie, dass tL+ > t′, wenn x′
µ raumartig zum Ursprung des Minkowskiraums

liegt; dies beweist, dass auch für einen bewegten Beobachter der zukünftige Licht-
kegel immer kleiner wird, d.h. ein Punkt x′

µ, der bei t = 0 nicht im zukünftigen
Lichtkegel liegt, wird auch für t > 0 nicht im zukünftigen Lichtkegel liegen (wohl
aber irgendwann im vergangenen Lichtkegel, wie bereits erwähnt.) Hinweis: Zeigen
Sie zunächst, dass

tL+ − t′ =
1

c2 − v2

[
v (vt′ − x′) +

√
c2 (x′ − vt′)2 + (c2 − v2) (y′2 + z′2)

]
.
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Anmerkung: Für y′ = z′ = 0 kann dieses Ergebnis leicht geometrisch gezeigt werden,
da die Grenzen des Lichtkegels relativ zu einem Punkt xµ immer parallel zu x = ±ct
sind, unabhängig von der Geschwindigkeit eines Beobachters am Punk xµ. [3P]

2.3 Invarianz der Minkowski–Metrik

In der Vorlesung hatten wir gesehen, dass eine allgemeine Lorentz–Transformation eines
Vierervektors a mit Hilfe der Matrix Λ geschrieben werden kann:

aµ =
3∑

ν=0

Λν
µa

′
ν ≡ Λν

µa
′
ν , (4)

wobei im zweiten Schritt Einsteins Summenkonvention benutzt wurde (über identische
griechische Indizes – hier ν – wird summiert, wenn sie einmal als Superskript und einmal
als Subskript erscheinen). Gl.(4) kann auch geschrieben werden als a = Λa′, im Sinne eines
Matritzenproduktes (Matrix mal Vektor ergibt einen Vektor). Ein Tensor zweiten Ranges
T transformiert dementsprechend wie

Tµν = Λα
µΛ

β
νT

′
αβ =

(
ΛT ′ΛT

)
µν

; (5)

hierbei bedeutet das Superskript T die Transposition der Matrix. Zeigen Sie durch explizite
Rechnung, dass die Minkowski–Metrik

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ diag(1,−1,−1,−1) . (6)

invariant ist unter (i) einem Boost in z−Richtung; (ii) einer allgemeinen Rotation, be-
schrieben durch die orthogonale (!) 3× 3 Matrix O. [4P]
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