
Advanced Quantum Theory (WS 24/25)
Homework no. 1 (October 7, 2024)

To be handed in by Sunday, October 13!

1 Hermitean Operators

An operator Q̂ is hermitean, Q̂ = Q̂†, if it satisfies∫
dxψ∗1(x)Q̂ψ2(x) =

∫
dx
(
Q̂ψ1(x)

)∗
ψ2(x) (1)

for all functions ψ1, ψ2 in the physical Hilbert space. (The integral over x may be multi–
dimensional, depending on the number of degrees of freedom of the system under consideration.)

1. Show that eq.(1) implies that all eigenvalues of Q̂ have to be real. [2P]

2. Show that two eigenfunctions of a hermitean operator are orthogonal if they correspond to
different eigenvalues. Why does this proof not work for degenerate (i.e., equal) eigenvalues?
[3P]

3. Show that the matrix representation Q of a hermitean operator Q̂ is a hermitean matrix,
i.e. Q = Q†, where the hermitean conjugate A† of a matrix A is defined via the component
relation

(
A†
)
ij

= (A)∗ji. Hint: (Q)ij =
∫
dxψ∗i (x)Q̂ψj(x) ≡ 〈i|Q̂|j〉, where ψ1, ψj are

elements of the basis of the Hilbert space. [3P]

2 Decomposition of a Wave Function

Any element of physical Hilbert space, i.e. any physically reasonable wave function, can be written
as linear superposition of orthonormal basis states:

ψ(x, t) =
∑
n

un(t)ψn(x) ; (2)

a convenient way to find a complete orthonormal basis is to find the eigenfunctions of a hermitean
operator (see the previous problem); orthnormality here means∫

dxψ∗i (x)ψj(x) = δij , (3)

where the Kronecker symbol δij = 1 for i = j and δij = 0 for i 6= 0. In this problem we will assume
for simplicity that this Hilbert space has countable dimension; e.g. the ψn could be eigenfunctions
of a hermitean operator with purely discrete spectrum of eigenvalues.

1. Using the orthonormality of the basis, show that the coefficients un(t) can be computed from

un(t) =

∫
dxψ∗n(x)ψ(x, t) . (4)

[2P]

2. Show that the normalization
∫
dx|ψ(x, t)|2 = 1 implies

∑
n |un(t)|2 = 1. [3P]

3. Show that the expectation value 〈Q〉 satisfies

〈Q〉 ≡
∫
dxψ∗(x, t)Q̂ψ(x, t) =

∑
n

qn |un(t)|2

if the ψn in eq.(2) are eigenfunctions of Q̂ with eigenvalues qn. [3P]
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3 Angular Momentum Operator

In class we saw that the z−component of the angular momentum operator can be written in
spherical coordinates as

L̂z = −i~ ∂

∂φ
, (5)

where φ is the polar angle.

1. Show that the

ψm(φ) =
1√
2π

eimφ (6)

are normalized eigenfunctions of L̂z with eigenvalues ~m. [1P]

2. Physically the angle φ is the same as the angle φ + 2π. Show that requiring ψm(φ) =
ψm(φ+ 2π) implies that m is integer. [2P]

3. Show that for integer m the eigenfunctions ψm are indeed orthonormal,

i.e.
∫ 2π

0
dφψ∗l (φ)ψm(φ) = δlm. [2P]

4 Canonical Transformations

In this exercise we review canonical transformations in the Hamiltonian formulation of classical
mechanics, which has close formal analogies to quantum mechanics. Consider a system with N
degrees of freedom, described by N generalized coordinates qi and their canonically conjugated
momenta pi = ∂L

∂q̇i
, where L(qi, q̇i) is the Lagrange function describing the dynamics of the system.

Consider a transformation of the 2N coordinates of phase space:

qi → q̄i(qj , pj) ; pi → p̄i(qj , pj) , (7)

i.e. the new coordinates and new momenta are some functions of the original coordinates and
momenta. Eqs.(7) define a canonical transformation if the following three relations for Poisson
brackets hold:

{q̄i, q̄k} = {p̄i, p̄k} = 0 ; {q̄i, p̄k} = δik . (8)

The Poisson bracket is defined as {A,B} ≡
∑
j

(
∂A
∂qj

∂B
∂pj
− ∂A

∂pj
∂B
∂qj

)
.

1. Show that canonical transformations leave the Hamilton equations of motion form–invariant,
i.e. one has

˙̄qi =
∂H

∂p̄i
; ˙̄pi = −∂H

∂q̄i
.

Hint: Use the chain rule to express the derivatives of H with respect to the q̄i, p̄i in terms
of derivatives of H w.r.t. the original qi, pi. [4P]

2. Show that
q̄ = ln(q−1 sin p) , p̄ = q cot p

is a canonical transformation. [2P]

3. Show that canonical transformations also leave the Poisson brackets between arbitrary func-
tions of the coordinates and momenta unchanged,

{A(q, p), B(q, p)}q,p = {A(q̄, p̄), B(q̄, p̄)}q̄,p̄ .

Here the indices on the coordinates and momenta have been suppressed for simplicity, and
on the right–hand side, the Poisson bracket is defined via derivatives w.r.t. the transformed
quantities, as indicated by the subscript. [4P]
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