Advanced Quantum Theory (WS 21/22)

Homework no. 1 (October 11, 2021)

1 Hermitean Operators

An operator \hat{Q} is hermitean, $\hat{Q}=\hat{Q}^{\dagger}$, if it satisfies

$$
\begin{equation*}
\int d x \psi_{1}^{*}(x) \hat{Q} \psi_{2}(x)=\int d x\left(\hat{Q} \psi_{1}(x)\right)^{*} \psi_{2}(x) \tag{1}
\end{equation*}
$$

for all functions ψ_{1}, ψ_{2} in the physical Hilbert space. (The integral over x may be multidimensional, depending on the number of degrees of freedom of the system under consideration.)

1. Show that eq.(1) implies that all eigenvalues of \hat{Q} have to be real.
2. Show that two eigenfunctions of a hermitean operator are orthogonal if they correspond to different eigenvalues. Why does this proof not work for degenerate (i.e., equal) eigenvalues? [3P]
3. Show that the matrix representation \mathbf{Q} of a hermitean operator \hat{Q} is a hermitean matrix, i.e. $\mathbf{Q}=\mathbf{Q}^{\dagger}$, where the hermitean conjugate \mathbf{A}^{\dagger} of a matrix \mathbf{A} is defined via the component relation $\left(\mathbf{A}^{\dagger}\right)_{i j}=(\mathbf{A})_{j i}^{*}$. Hint: $(\mathbf{Q})_{i j}=\int d x \psi_{i}^{*}(x) \hat{Q} \psi_{j}(x) \equiv\langle i| \hat{Q}|j\rangle$, where ψ_{1}, ψ_{j} are elements of the basis of the Hilbert space.
[3P]

2 Decomposition of a Wave Function

Any element of physical Hilbert space, i.e. any physically reasonable wave function, can be written as linear superposition of orthonormal basis states:

$$
\begin{equation*}
\psi(x, t)=\sum_{n} u_{n}(t) \psi_{n}(x) ; \tag{2}
\end{equation*}
$$

a convenient way to find a complete orthonormal basis is to find the eigenfunctions of a hermitean operator (see the previous problem); orthnormality here means

$$
\begin{equation*}
\int d x \psi_{i}^{*}(x) \psi_{j}(x)=\delta_{i j} \tag{3}
\end{equation*}
$$

where the Kronecker symbol $\delta_{i j}=1$ for $i=j$ and $\delta_{i j}=0$ for $i \neq 0$. In this problem we will assume for simplicity that this Hilbert space has countable dimension; e.g. the ψ_{n} could be eigenfunctions of a hermitean operator with purely discrete spectrum of eigenvalues.

1. Using the orthonormality of the basis, show that the coefficients $u_{n}(t)$ can be computed from

$$
\begin{equation*}
u_{n}(t)=\int d x \psi_{n}^{*}(x) \psi(x, t) \tag{4}
\end{equation*}
$$

2. Show that the normalization $\int d x|\psi(x, t)|^{2}=1$ implies $\sum_{n}\left|u_{n}(t)\right|^{2}=1$.
3. Show that the expectation value $\langle Q\rangle$ satisfies

$$
\langle Q\rangle \equiv \int d x \psi^{*}(x, t) \hat{Q} \psi(x, t)=\sum_{n} q_{n}\left|u_{n}(t)\right|^{2}
$$

if the ψ_{n} in eq.(2) are eigenfunctions of \hat{Q} with eigenvalues q_{n}.

3 Angular Momentum Operator

In class we saw that the z-component of the angular momentum operator can be written in spherical coordinates as

$$
\begin{equation*}
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \tag{5}
\end{equation*}
$$

where ϕ is the polar angle.

1. Show that the

$$
\begin{equation*}
\psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{i m \phi} \tag{6}
\end{equation*}
$$

are normalized eigenfunctions of \hat{L}_{z} with eigenvalues $\hbar m$.
2. Physically the angle ϕ is the same as the angle $\phi+2 \pi$. Show that requiring $\psi_{m}(\phi)=$ $\psi_{m}(\phi+2 \pi)$ implies that m is integer.
3. Show that for integer m the eigenfunctions ψ_{m} are indeed orthonormal,
i.e. $\int_{0}^{2 \pi} d \phi \psi_{l}^{*}(\phi) \psi_{m}(\phi)=\delta_{l m}$.

4 Canonical Transformations

In this exercise we review canonical transformations in the Hamiltonian formulation of classical mechanics, which has close formal analogies to quantum mechanics. Consider a system with N degrees of freedom, described by N generalized coordinates q_{i} and their canonically conjugated momenta $p_{i}=-\frac{\partial L}{\partial \dot{q}_{i}}$, where $L\left(q_{i}, \dot{q}_{i}\right)$ is the Lagrange function describing the dynamics of the system. Consider a transformation of the $2 N$ coordinates of phase space:

$$
\begin{equation*}
q_{i} \rightarrow \bar{q}_{i}\left(q_{j}, p_{j}\right) ; \quad p_{i} \rightarrow \bar{p}_{i}\left(q_{j}, p_{j}\right), \tag{7}
\end{equation*}
$$

i.e. the new coordinates and new momenta are some functions of the original coordinates and momenta. Eqs.(7) define a canonical transformation if the following three relations for Poisson brackets hold:

$$
\begin{equation*}
\left\{\bar{q}_{i}, \bar{q}_{k}\right\}=\left\{\bar{p}_{i}, \bar{p}_{k}\right\}=0 ; \quad\left\{\bar{q}_{i}, \bar{p}_{k}\right\}=\delta_{i k} \tag{8}
\end{equation*}
$$

The Poisson bracket is defined as $\{A, B\} \equiv \sum_{j}\left(\frac{\partial A}{\partial q_{j}} \frac{\partial B}{\partial p_{j}}-\frac{\partial A}{\partial p_{j}} \frac{\partial B}{\partial q_{j}}\right)$.

1. Show that canonical transformations leave the Hamilton equations of motion form-invariant, i.e. one has

$$
\dot{\bar{q}}_{i}=\frac{\partial H}{\partial \bar{p}_{i}} ; \quad \dot{\bar{p}}_{i}=-\frac{\partial H}{\partial \bar{q}_{i}} .
$$

Hint: Use the chain rule to express the derivatives of H with respect to the \bar{q}_{i}, \bar{p}_{i} in terms of derivatives of H w.r.t. the original q_{i}, p_{i}.
2. Show that

$$
\begin{equation*}
\bar{q}=\ln \left(q^{-1} \sin p\right), \quad \bar{p}=q \cot p \tag{2P}
\end{equation*}
$$

is a canonical transformation.
3. Show that canonical transformations also leave the Poisson brackets between arbitrary functions of the coordinates and momenta unchanged,

$$
\{A(q, p), B(q, p)\}_{q, p}=\{A(\bar{q}, \bar{p}), B(\bar{q}, \bar{p})\}_{\bar{q}, \bar{p}}
$$

Here the indices on the coordinates and momenta have been suppressed for simplicity, and on the right-hand side, the Poisson bracket is defined via derivatives w.r.t. the transformed quantities, as indicated by the subscript.
[4P]

