Advanced Quantum Theory (WS 21/22)

Homework no. 10 (December 13, 2021)
Please hand in your solution by Monday, December 20!

1 Scattering on a Dipole

In this problem we will compute the Coulomb scattering cross section for scattering on a physical dipole, consisting of two point particles with opposite charges $\pm Z_{1} e$, one located at the origin $(\vec{x}=\overrightarrow{0})$, the other at $\vec{x}=\vec{d}$. The incident particles have charge $Z_{2} e$.

1. Show that in Born approximation the scattering amplitude $f_{\vec{k}}(\theta, \phi)$ can be written as

$$
\begin{equation*}
f_{\vec{k}}^{\text {dipole }}=\left(1-\mathrm{e}^{-i \vec{q} \cdot \vec{d}}\right) f_{\vec{k}}^{\text {monopole }} \tag{1}
\end{equation*}
$$

where $f_{\vec{k}}^{\text {monopole }}$ is the scattering amplitude for scattering on a single pointlike charge derived in class,

$$
\begin{equation*}
f_{\vec{k}}^{\text {monopole }}=-\frac{2 M}{\hbar^{2}} \frac{Z_{1} Z_{2} e^{2}}{4 \pi \epsilon_{0}} \frac{1}{|\vec{q}|^{2}} \tag{2}
\end{equation*}
$$

Here $\vec{q}=\vec{k}^{\prime}-\vec{k}$ is the difference between the outgoing and incoming wave vectors, i.e. choosing $\vec{k}=k(0,0,1)$ (incoming beam in $+z$ direction), the scattering angles are defined by $\vec{k}^{\prime}=k(\sin \theta \sin \phi, \sin \theta \cos \phi, \cos \theta)$. Hint: Evaluate the contributions from the two target particles separately, and perform a coordinate shift to evaluate the contribution from the particle located at $\vec{x}=\vec{d}$.
[3P]
2. Consider the case $\vec{d}=(0,0, d)$, i.e. the dipole is aligned with the beam. Show that in this case the scattering cross section is independent of ϕ, and remains finite for $\theta \rightarrow 0$.
3. Now assume that $\vec{d}=(0, d, 0)$, i.e. the dipole is orthogonal to the incident beam. Show that in this case the scattering cross section does depend on ϕ, and evaluate it in the limit $\theta \rightarrow 0$. [3P]
4. Finally, consider the case of large momentum exchange, $|\vec{q}| \gg 1 /|\vec{d}|$. Show that in this case the cross section integrated over a sufficiently large region of phase space is approximately equal to the incoherent sum of the cross sections for scattering on the two separate point charges. Note: This is the basis of "deep inelastic scattering" of electrons on protons: at sufficiently large momentum transfer, the cross section becomes an incoherent sum of terms describing scattering on quarks in the proton.

2 Two-Particle Wave Function

Consider the two-particle wave function

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}\right)=N \mathrm{e}^{-\left(x_{1}-x_{2}\right)^{2} / \sigma^{2}} \mathrm{e}^{-\left(x_{1}+x_{2}\right)^{2} / \Sigma^{2}} \tag{3}
\end{equation*}
$$

For simplicity we work in a single dimension, x_{1} and x_{2} being the coordinate of particle 1 and particle 2 , respectively.

1. Determine the normalization constant N in eq.(3) from the requirement that $\int_{-\infty}^{\infty} d x_{1} d x_{2}\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}=1$.
2. Show that $\psi\left(x_{1}, x_{2}\right)$ can not be written as a simple product of one-particle wave functions, i.e. one cannot write $\psi\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) g\left(x_{2}\right)$ for any functions f, g.
3. Nevertheless $\psi\left(x_{1}, x_{2}\right)$ can be decomposed in single-particle wave functions, as claimed in class. The latter can e.g. be plane waves,

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k_{1} d k_{2} \phi\left(k_{1}, k_{2}\right) \mathrm{e}^{-i k_{1} x_{1}} \mathrm{e}^{-i k_{2} x_{2}} \tag{4}
\end{equation*}
$$

Since the k_{i} can take continuous values, the superposition of products of single-particle states requires an integral rather than a sum, as usual. Evaluate the coefficient function $\phi\left(k_{1}, k_{2}\right)$, a.k.a. wave function in Fourier space, explicitly. Hint: Recall the result from problem 3 on the third homework sheet,

$$
\int_{-\infty}^{\infty} d x \mathrm{e}^{-a x^{2}+b x}=\sqrt{\frac{\pi}{a}} \mathrm{e}^{b^{2} /(4 a)}
$$

where a and b may be complex, with $\Re e(a) \geq 0$.
4. Can $\psi\left(x_{1}, x_{2}\right)$ of eq.(3) be used to describe a system of (i) two identical bosons; (ii) two identical fermions?
[2P]

3 Totally Symmetric N-Particle State

We saw in class that

$$
\begin{equation*}
\hat{S}_{+}\left|i_{1}, i_{2}, \ldots i_{N}\right\rangle=\frac{1}{\sqrt{N!}} \sum_{\hat{\mathcal{P}}} \hat{\mathcal{P}}\left|i_{1}, i_{2}, \ldots i_{N}\right\rangle \tag{5}
\end{equation*}
$$

is a totally symmetric N-particle state, if $\left|i_{1}, i_{2}, \ldots i_{N}\right\rangle=\left|i_{1}\right\rangle\left|i_{2}\right\rangle \ldots\left|i_{N}\right\rangle$ is a product of oneparticle states. Show that the squared norm of this state is given by

$$
\begin{equation*}
\| \hat{S}_{+}\left|i_{1}, i_{2}, \ldots i_{N}\right\rangle \|^{2}=n_{1}!n_{2}!\ldots n_{n}! \tag{6}
\end{equation*}
$$

where n_{α} is the number of particles in state $|\alpha\rangle$, with $\sum_{i=1}^{n} n_{i}=N$. Assume that the singleparticle states are normalized, $\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}$. Hint: Use the fact that there are n ! permutations of n objects, and carefully distinguish between the permutations in \hat{S}_{+}that do not change anything (since they exchange identical states $|\alpha\rangle$) and permutations that do change something. How many different permutations of the latter kind are there altogether?
[5P]

