
Advanced Quantum Theory (WS 21/22)
Homework no. 11 (December 20, 2021)

Please hand in your solution by Monday, January 10.

1 Two–Particle Operators in Second Quantization

Consider an operator F̂ that can be written as a sum of two–particle operators f̂ :

F̂ =
1

2

∑

α6=β

f̂(~xα, ~xβ) . (1)

Here α, β label identical particles.

1. Show that F̂ can be written as

F̂ =
1

2

∑

α6=β

∑

i,j,k,l

〈i, j|f̂ |k, l〉 |i〉α|j〉β〈k|α〈l|β , (2)

where

〈i, j|f̂ |k, l〉 =

∫

d3x d3y ψ∗
i (~x)ψ

∗
j (~y)f̂(~x, ~y)ψk(~x)ψl(~y) . (3)

Here |i〉α means that particle α is in the single–particle state |i〉, etc. Hint: Compute
the matrix element of F̂ between two–particle states that can be written as products
of single–particle states; this is sufficient, since all two–particle states can be written
as linear superpositions of such products. [2P]

2. Now assume that the particles in question are fermions (the first part of this problem
holds equally for bosons and fermions). Show that F̂ can be written in terms of
fermionic creation and annihilation operators:

F̂ =
1

2

∑

i,j,k,l

〈i, j|f̂ |k, l〉 b̂†i b̂
†
j b̂lb̂k . (4)

Hint: First, show that
∑

P

(−1)P P̂|i1〉1|i2〉2 . . . |iN〉N = (−1)
∑

k<j nk

∑

α

(−1)α|j〉α
∑

P

(−1)P P̂|i1〉1|i2〉2 . . . |iN−1〉N−1 ,

where on the rhs the permutation is only over N − 1 elements, and it has been
assumed that one of the original |iα〉 = |j〉. Following the corresponding derivation
for bosonic operators shown in class, use this relation to prove

∑

α

|i〉α〈j|α = b̂
†
i b̂j , (5)

which in turn can be used to prove eq.(4). [5P]
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2 Hartree–Fock Approximation for Atoms

The formalism of second quantization can be used to derive the Hartree–Fock treatment
of (possibly ionized) atoms with N electrons. The nucleus is assumed to be a fixed source
(at the origin) of an external potential

U(~x) = −
Ze2

|~x|
. (6)

In addition, one treats the Coulomb interaction between the electrons through the two–
particle potential

V (~x, ~y) =
e2

|~x− ~y|
, (7)

which is evidently a function of the difference ~x− ~y only.
The electrons are described by single–particle states

|i〉 = |φi, si〉 . (8)

Here φi(~x) determines the spatial distribution of the wave function of state |i〉, and si = ±1

2

is the z−component of the electron spin. These single–particle states are generated by
operators b̂†i . One makes the following ansatz for the N−electron state |ψ〉:

|ψ〉 =
N
∏

i=1

b̂
†
i |0〉 , (9)

where |0〉 is the vacuum state (without electrons). The Hamiltonian can then be written
as

Ĥ =
∑

i,j

b̂
†
i b̂j

(

〈i|T̂ |j〉+ 〈i|U |j〉
)

+
1

2

∑

i,j,k,l

〈i, j|V |k, l〉b̂†i b̂
†
j b̂lb̂k〉 .

Here T̂ = − ~
2

2me
∇2 is the operator for the kinetic energy of a particle.

1. Show that
〈ψ|b̂†i b̂j |ψ〉 = δij , (10)

if |j〉 is one of the states appearing in the ansatz (9); for all other b̂j the matrix
element in eq.(10) evidently vanishes. Hint: You can either use the definition of how
b̂j , b̂

†
i act on an N−electron state, as given in class; or use b̂j |0〉 = 〈0|b̂†i = 0 and the

anti–commutator of b̂j and b̂
†
k. [3P]

2. Using eq.(10), show that

∑

i,j

〈i|Ô|j〉〈ψ|b̂†i b̂j |ψ〉 =
N
∑

i=1

〈i|Ô|i〉 , (11)

where Ô ∈ T̂ , U . Note that the double sum on the left–hand side goes over all states,
whereas the single sum on the right–hand side only goes over the N states contained
in the N−particle state defined in eq.(9). [1P]
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3. Similarly, show that
〈ψ|b̂†i b̂

†
j b̂lb̂k|ψ〉 = δikδjl − δilδjk , (12)

if both |k〉 and |l〉 are represented in the state |ψ〉 defined in eq.(9); otherwise the
matrix element vanishes again. [4P]

4. Putting everything together, show that

〈ψ|Ĥ|ψ〉 =

N
∑

i=1

∫

d3x

(

−
~
2

2me

φ∗
i (~x)∇

2φi(~x) + U(|~x|) |φi(~x)|
2

)

(13)

+
1

2

N
∑

i,j=1

∫

d3x d3yV (~x− ~y)
[

|φi(~x)|
2 |φj(~y)|

2 − δsi,sjφ
∗
i (~x)φ

∗
j(~y)φi(~y)φj(~x)

]

.

Hint: Note that the matrix element 〈i, j|V |k, l〉 contains a factor δsi,skδsj ,sl, since the
Coulomb interactions do not affect the spin, which is part of the definition of the
single–particle states, see eq.(8). The sums in eq.(13) run over all N electrons. [5P]

Note: In the Hartree–Fock treatment one minimizes 〈ψ|Ĥ|ψ〉 by appropriate choice of
the single–particle wave functions φi(~x) and spins si. Also, the ansatz (9) is indeed an
approximation, since one writes the total wave function as a product of single–particle
wave functions; the most general ansatz would involve a sum over such products with
appropriate coefficients (or an integral over continuous coefficients, with a product state
in the argument, as in eq.(4) on the previous HW sheet).
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