Advanced Quantum Theory (WS 21/22)

Homework no. 11 (December 20, 2021)
Please hand in your solution by Monday, January 10.

1 Two-Particle Operators in Second Quantization

Consider an operator \hat{F} that can be written as a sum of two-particle operators \hat{f} :

$$
\begin{equation*}
\hat{F}=\frac{1}{2} \sum_{\alpha \neq \beta} \hat{f}\left(\vec{x}_{\alpha}, \vec{x}_{\beta}\right) \tag{1}
\end{equation*}
$$

Here α, β label identical particles.

1. Show that \hat{F} can be written as

$$
\begin{equation*}
\hat{F}=\frac{1}{2} \sum_{\alpha \neq \beta} \sum_{i, j, k, l}\langle i, j| \hat{f}|k, l\rangle|i\rangle_{\alpha}|j\rangle_{\beta}\left\langlek | _ { \alpha } \left\langle\left. l\right|_{\beta},\right.\right. \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle i, j| \hat{f}|k, l\rangle=\int d^{3} x d^{3} y \psi_{i}^{*}(\vec{x}) \psi_{j}^{*}(\vec{y}) \hat{f}(\vec{x}, \vec{y}) \psi_{k}(\vec{x}) \psi_{l}(\vec{y}) . \tag{3}
\end{equation*}
$$

Here $|i\rangle_{\alpha}$ means that particle α is in the single-particle state $|i\rangle$, etc. Hint: Compute the matrix element of \hat{F} between two-particle states that can be written as products of single-particle states; this is sufficient, since all two-particle states can be written as linear superpositions of such products.
[2P]
2. Now assume that the particles in question are fermions (the first part of this problem holds equally for bosons and fermions). Show that \hat{F} can be written in terms of fermionic creation and annihilation operators:

$$
\begin{equation*}
\hat{F}=\frac{1}{2} \sum_{i, j, k, l}\langle i, j| \hat{f}|k, l\rangle \hat{b}_{i}^{\dagger} \hat{b}_{j}^{\dagger} \hat{b}_{l} \hat{b}_{k} . \tag{4}
\end{equation*}
$$

Hint: First, show that
$\sum_{\mathcal{P}}(-1)^{P} \hat{\mathcal{P}}\left|i_{1}\right\rangle_{1}\left|i_{2}\right\rangle_{2} \ldots\left|i_{N}\right\rangle_{N}=(-1)^{\sum_{k<j} n_{k}} \sum_{\alpha}(-1)^{\alpha}|j\rangle_{\alpha} \sum_{\mathcal{P}}(-1)^{P} \hat{\mathcal{P}}\left|i_{1}\right\rangle_{1}\left|i_{2}\right\rangle_{2} \ldots\left|i_{N-1}\right\rangle_{N-1}$,
where on the rhs the permutation is only over $N-1$ elements, and it has been assumed that one of the original $\left|i_{\alpha}\right\rangle=|j\rangle$. Following the corresponding derivation for bosonic operators shown in class, use this relation to prove

$$
\begin{equation*}
\sum_{\alpha}|i\rangle_{\alpha}\left\langle\left. j\right|_{\alpha}=\hat{b}_{i}^{\dagger} \hat{b}_{j},\right. \tag{5}
\end{equation*}
$$

which in turn can be used to prove eq.(4). [5P]

2 Hartree-Fock Approximation for Atoms

The formalism of second quantization can be used to derive the Hartree-Fock treatment of (possibly ionized) atoms with N electrons. The nucleus is assumed to be a fixed source (at the origin) of an external potential

$$
\begin{equation*}
U(\vec{x})=-\frac{Z e^{2}}{|\vec{x}|} \tag{6}
\end{equation*}
$$

In addition, one treats the Coulomb interaction between the electrons through the twoparticle potential

$$
\begin{equation*}
V(\vec{x}, \vec{y})=\frac{e^{2}}{|\vec{x}-\vec{y}|}, \tag{7}
\end{equation*}
$$

which is evidently a function of the difference $\vec{x}-\vec{y}$ only.
The electrons are described by single-particle states

$$
\begin{equation*}
|i\rangle=\left|\phi_{i}, s_{i}\right\rangle \tag{8}
\end{equation*}
$$

Here $\phi_{i}(\vec{x})$ determines the spatial distribution of the wave function of state $|i\rangle$, and $s_{i}= \pm \frac{1}{2}$ is the z-component of the electron spin. These single-particle states are generated by operators \hat{b}_{i}^{\dagger}. One makes the following ansatz for the N-electron state $|\psi\rangle$:

$$
\begin{equation*}
|\psi\rangle=\prod_{i=1}^{N} \hat{b}_{i}^{\dagger}|0\rangle, \tag{9}
\end{equation*}
$$

where $|0\rangle$ is the vacuum state (without electrons). The Hamiltonian can then be written as

$$
\left.\hat{H}=\sum_{i, j} \hat{b}_{i}^{\dagger} \hat{b}_{j}(\langle i| \hat{T}|j\rangle+\langle i| U|j\rangle)+\frac{1}{2} \sum_{i, j, k, l}\langle i, j| V|k, l\rangle \hat{b}_{i}^{\dagger} \hat{b}_{j}^{\dagger} \hat{b}_{l} \hat{b}_{k}\right\rangle .
$$

Here $\hat{T}=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}$ is the operator for the kinetic energy of a particle.

1. Show that

$$
\begin{equation*}
\langle\psi| \hat{b}_{i}^{\dagger} \hat{b}_{j}|\psi\rangle=\delta_{i j}, \tag{10}
\end{equation*}
$$

if $|j\rangle$ is one of the states appearing in the ansatz (9); for all other \hat{b}_{j} the matrix element in eq.(10) evidently vanishes. Hint: You can either use the definition of how $\hat{b}_{j}, \hat{b}_{i}^{\dagger}$ act on an N-electron state, as given in class; or use $\hat{b}_{j}|0\rangle=\langle 0| \hat{b}_{i}^{\dagger}=0$ and the anti-commutator of \hat{b}_{j} and \hat{b}_{k}^{\dagger}. [3P]
2. Using eq.(10), show that

$$
\begin{equation*}
\sum_{i, j}\langle i| \hat{O}|j\rangle\langle\psi| \hat{b}_{i}^{\dagger} \hat{b}_{j}|\psi\rangle=\sum_{i=1}^{N}\langle i| \hat{O}|i\rangle, \tag{11}
\end{equation*}
$$

where $\hat{O} \in \hat{T}, U$. Note that the double sum on the left-hand side goes over all states, whereas the single sum on the right-hand side only goes over the N states contained in the N-particle state defined in eq.(9).
3. Similarly, show that

$$
\begin{equation*}
\langle\psi| \hat{b}_{i}^{\dagger} \hat{b}_{j}^{\dagger} \hat{b}_{l} \hat{b}_{k}|\psi\rangle=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}, \tag{12}
\end{equation*}
$$

if both $|k\rangle$ and $|l\rangle$ are represented in the state $|\psi\rangle$ defined in eq.(9); otherwise the matrix element vanishes again.
4. Putting everything together, show that

$$
\begin{align*}
\langle\psi| \hat{H}|\psi\rangle & =\sum_{i=1}^{N} \int d^{3} x\left(-\frac{\hbar^{2}}{2 m_{e}} \phi_{i}^{*}(\vec{x}) \nabla^{2} \phi_{i}(\vec{x})+U(|\vec{x}|)\left|\phi_{i}(\vec{x})\right|^{2}\right) \tag{13}\\
& +\frac{1}{2} \sum_{i, j=1}^{N} \int d^{3} x d^{3} y V(\vec{x}-\vec{y})\left[\left|\phi_{i}(\vec{x})\right|^{2}\left|\phi_{j}(\vec{y})\right|^{2}-\delta_{s_{i}, s_{j}} \phi_{i}^{*}(\vec{x}) \phi_{j}^{*}(\vec{y}) \phi_{i}(\vec{y}) \phi_{j}(\vec{x})\right] .
\end{align*}
$$

Hint: Note that the matrix element $\langle i, j| V|k, l\rangle$ contains a factor $\delta_{s_{i}, s_{k}} \delta_{s_{j}, s_{l}}$, since the Coulomb interactions do not affect the spin, which is part of the definition of the single-particle states, see eq.(8). The sums in eq.(13) run over all N electrons. [5P]

Note: In the Hartree-Fock treatment one minimizes $\langle\psi| \hat{H}|\psi\rangle$ by appropriate choice of the single-particle wave functions $\phi_{i}(\vec{x})$ and spins s_{i}. Also, the ansatz (9) is indeed an approximation, since one writes the total wave function as a product of single-particle wave functions; the most general ansatz would involve a sum over such products with appropriate coefficients (or an integral over continuous coefficients, with a product state in the argument, as in eq.(4) on the previous HW sheet).

