Advanced Quantum Theory (WS 21/22)

Homework no. 12 (January 10, 2022)
Please hand in your solution by Monday, January 17!

1 Hubbard Model

This problem is an application of the formalism developed in chapters 6.3 and 6.4.
Consider a cubical lattice, where electrons sit at locations $\vec{R}_{i}=\vec{n}_{i} a$, where a is the lattice constant (i.e., the distance between neighboring lattice sites), and $\vec{n}_{i}=\left(n_{x, i}, n_{y, i}, n_{z, i}\right)$, $n_{(x, y, z), i}$ being integers. The Hamiltonian is assumed to be the sum of kinetic energy and a two-particle interaction,

$$
\begin{equation*}
\hat{H}=\sum_{i, j} \sum_{s} t_{i j} \hat{b}_{i, s}^{\dagger} \hat{b}_{j, s}+\frac{1}{2} \sum_{i, j, k, l} \sum_{s, s^{\prime}} V_{i j k l} \hat{b}_{i, s}^{\dagger} \hat{b}_{j, s^{\prime}}^{\dagger} \hat{b}_{l, s^{\prime}} \hat{b}_{k, s} . \tag{1}
\end{equation*}
$$

Here i, j, k, l label the lattice sites, and $s, s^{\prime} \in\{-1 / 2,1 / 2\}$ determine the z-component of the electron spin. Hence $\hat{b}_{i, s}^{\dagger}$ creates an electron with spin $S_{z}=\hbar s$ at the $i .-$ th lattice site.

In the Hubbard model one assumes that the electrons are quite localized, with one-particle states described by

$$
\begin{equation*}
\varphi_{i, s}(\vec{x})=\chi_{s} \phi\left(\vec{x}-\vec{R}_{i}\right), \tag{2}
\end{equation*}
$$

where χ_{s} describes the spin state, and the spatial part is taken to be a Gaussian,

$$
\begin{equation*}
\phi(\vec{x})=\frac{1}{\Delta^{3 / 2} \pi^{3 / 4}} \mathrm{e}^{-\vec{x}^{2} /\left(2 \Delta^{2}\right)} . \tag{3}
\end{equation*}
$$

1. Compute the diagonal contributions $t_{i i}$ to the kinetic energy. Hint: They are, of course, independent of i; from dimensional arguments it follows that $t_{i i} \equiv t \propto \hbar^{2} /\left(m \Delta^{2}\right)$. Keep in mind that one is working in three dimensions!
2. Show that the contribution from nearest neighbors to the kinetic energy is suppressed by a factor $\mathrm{e}^{-a^{2} /\left(4 \Delta^{2}\right)}$, relative to t computed above. Hint: You can assume $\vec{R}_{j}=$ $\vec{R}_{i}+a \vec{e}_{x}, \vec{e}_{x}$ being the unit vector in x-direction, since a cubical lattice is invariant under exchanges of the three unit vectors of Cartesian coordinates.
3. Due to the strong localization of the electrons, the interaction term can to good approximation be written as $V_{i j k l}=V_{i j} \delta_{i l} \delta_{j k}$. Compute the diagonal contribution $V_{i i}$ and the contribution from nearest neighbors, and show that the latter is suppressed by a factor $\mathrm{e}^{-a^{2} /\left(2 \Delta^{2}\right)}$ relative to the former. Hint: Use

$$
V_{i j}=\int d^{3} x \int d^{3} y\left|\phi\left(\vec{x}-\vec{R}_{i}\right)\right|^{2} V(\vec{x}, \vec{y})\left|\phi\left(\vec{y}-\vec{R}_{j}\right)\right|^{2},
$$

using a simple contact interaction,

$$
V(\vec{x}, \vec{y})=\lambda \delta^{3}(\vec{x}-\vec{y}) .
$$

[5P]
4. Finally, explicitly write down the leading terms in the Hamiltonian (1) in the limit $\Delta \ll a$, i.e. for strong localization. Use the properties of the fermionic creation and annihilation operators to collapse the double sum over spins in the interactions to a single sum.
[3P]

