Advanced Quantum Theory (WS 24/25) Homework no. 12 (January 8, 2024) Please hand in your solution by Sunday, January 12!

1 Lorentz Group

The Lorentz group can be defined as the set of all rank–2 tensors Λ that leave the Minkowski metric g invariant,

$$\Lambda^T g \Lambda = g \,. \tag{1}$$

A proper Lorentz transformation in addition satisfies $\det(\Lambda) = 1$. It can be written as a product of *boosts* and *rotations*. A rotation only affects the spatial components of a 4-vector; it has an orthonormal 3×3 matrix \mathcal{O} in the lower-right corner of Λ , with $\Lambda_0^0 = 1$ and $\Lambda_0^i = \Lambda_i^0 = 0$, see eq.(7.5) in class. A boost in x-direction is described by

$$\Lambda = \begin{pmatrix} \gamma & \beta\gamma & 0 & 0\\ \beta\gamma & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(2)

see eq.(7.7) in class; here $\beta = v/c$, v being the relative velocity between the two inertial frames one is considering and c the speed of light in vacuum, and $\gamma = 1/\sqrt{1-\beta^2}$. In this exercise we investigate the properties of this group.

- 1. First, show that the Λ satisfying eq.(1) indeed form a group; it is called SO(3,1). [4P].
- 2. Show that the set of all rotations form a subgroup of the Lorentz group; it is called SO(3). [3P]
- 3. Show that the set of all rotations around the x axis (i.e. in the (y, z) plane) form a subgroup of the group of all rotations, and hence also a subgroup of the Lorentz group. (This is true for rotations around any fixed axis, of course.) What is the single rotation that results from successive rotations by angles α_1 and α_2 ? [2P]
- 4. Show that the boosts along the x-axis also form a subgroup of the Lorentz group. (Again this is true for boosts along any fixed direction.) What is the single boost that describes successive boosts by β_1 and β_2 ? (This is also known as the relativistic addition theorem of velocities.) [3P]
- 5. Finally, show that the set of *all* boosts does *not* form a subgroup of the Lorentz group. To that end, consider successive boosts in x and y directions, by β_x and β_y , respectively. Does the order of these boosts matter? In order to show that the resulting product cannot be represented by a single boost in the (x, y)-plane (the z direction evidently doesn't play a role here, and can be neglected), write down the Λ corresponding to a boost in a general direction defined by the unit vector $\vec{n} = (\cos \theta, \sin \theta)$. *Hint:* Write the spatial 3-vector \vec{x} as a term $\propto \vec{n}$ and a second term $\propto \vec{n}_T$, where \vec{n}_T is orthogonal to \vec{n} ; a boost in \vec{n} direction only affects the component of \vec{x} parallel to \vec{n} . [5P]

2 Reminder: 4–Vectors and Relativistic Kinematics

A contravariant 4-vector a^{μ} changes under a Lorentz transformation as

$$a^{\mu} \to \Lambda^{\mu}_{\nu} a^{\nu};$$
 (3)

here Einstein's summation convention has been used, i.e. a sum over the repeated index ν is implied; by convention this sum runs from 0 to 3. The covariant version of this vector is defined as

$$a_{\mu} = g_{\mu\nu} a^{\nu} \,, \tag{4}$$

where $g_{\mu\nu}$ is the Minkowski metric, given by

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \operatorname{diag}(1, -1, -1, -1).$$
(5)

1. Show by explicit calculation that the scalar product of two 4–vectors a^{μ} and b^{μ} , defined via

$$a \cdot b = a^{\mu}b_{\mu} = a_{\mu}b^{\mu} = a^{\mu}b^{\nu}g_{\mu\nu} \tag{6}$$

is invariant under a boost in y-direction.

- 2. Show that $f(\vec{x},t) = e^{ip \cdot x/\hbar}$ behaves like a plane wave; hence $k^{\mu} = p^{\mu}/\hbar$ is a wave 4-vector. [1P]
- 3. Consider the two-body decay of a particle with mass M and 4-momentum p^{μ} into two particles with masses m_1, m_2 and 4-momenta k_1^{μ}, k_2^{μ} . Energy and momentum conservation implies

$$p^{\mu} = k_1^{\mu} + k_2^{\mu} \,. \tag{7}$$

[1P]

Show that this is possible if, and only if, $m_1 + m_2 \leq M$. *Hint:* The possibility of this decay occurring must be independent of the reference frame, hence you can analyse the problem in a convenient frame. [2P]

4. Specifically, consider the case of a spinless (scalar) particle into two massless particles; an example is the decay of a neutral pion into two photons, $\pi^0(p) \to \gamma(k_1)\gamma(k_2)$. Compute the spectrum of one decay photon, $d\Gamma/dE_1$, in a frame where the pion has 4-momentum p^{μ} . *Hint:* First show that in the rest frame of the decaying pion, $d\Gamma/dE_1^* \propto \delta(E_1^* - Mc^2/2)$, where M is the mass of the neutral pion and the * refers to the pion rest frame. Using the fact that the decay is isotropic in the rest frame, $d\Gamma/d\Omega^* = \text{const.}$, perform the boost into the frame where the pion has 4-momentum p^{μ} for a fixed angle θ^* between the photon direction in the pion rest frame and the flight direction of the pion, and then integrate over $\cos \theta^*$ to derive the answer. [5P]