Advanced Quantum Theory (WS 21/22)

Homework no. 13 (January 17, 2022)
Please hand in your solution by Monday, January 24!

1 Lorentz Group

The Lorentz group can be defined as the set of all rank-2 tensors Λ that leave the Minkowski metric g invariant,

$$
\begin{equation*}
\Lambda^{T} g \Lambda=g . \tag{1}
\end{equation*}
$$

A proper Lorentz transformation in addition satisfies $\operatorname{det}(\Lambda)=1$. It can be written as a product of boosts and rotations. A rotation only affects the spatial components of a 4 -vector; it has an orthonormal 3×3 matrix \mathcal{O} in the lower-right corner of Λ, with $\Lambda_{0}^{0}=1$ and $\Lambda_{0}^{i}=\Lambda_{i}^{0}=0$, see eq.(7.5) in class. A boost in x-direction is described by

$$
\Lambda=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \tag{2}\\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

see eq.(7.7) in class; here $\beta=v / c, v$ being the relative velocity between the two inertial frames one is considering and c the speed of light in vacuum, and $\gamma=1 / \sqrt{1-\beta^{2}}$. In this exercise we investigate the properties of this group.

1. First, show that the Λ satisfying eq.(1) indeed form a group; it is called $S O(3,1)$. [4P].
2. Show that the set of all rotations form a subgroup of the Lorentz group; it is called $S O(3)$.
[3P]
3. Show that the set of all rotations around the x axis (i.e. in the (y, z) plane) form a subgroup of the group of all rotations, and hence also a subgroup of the Lorentz group. (This is true for rotations around any fixed axis, of course.) What is the single rotation that results from successive rotations by angles α_{1} and α_{2} ?
[2P]
4. Show that the boosts along the x-axis also form a subgroup of the Lorentz group. (Again this is true for boosts along any fixed direction.) What is the single boost that describes successive boosts by β_{1} and β_{2} ? (This is also known as the relativistic addition theorem of velocities.)
[3P]
5. Finally, show that the set of all boosts does not form a subgroup of the Lorentz group. To that end, consider successive boosts in x and y directions, by β_{x} and β_{y}, respectively. Does the order of these boosts matter? In order to show that the resulting product cannot be represented by a single boost in the (x, y)-plane (the z direction evidently doesn't play a role here, and can be neglected), write down the Λ corresponding to a boost in a general direction defined by the unit vector $\vec{n}=(\cos \theta, \sin \theta)$. Hint: Write the spatial 3-vector \vec{x} as a term $\propto \vec{n}$ and a second term $\propto \vec{n}_{T}$, where \vec{n}_{T} is orthogonal to \vec{n}; a boost in \vec{n} direction only affects the component of \vec{x} parallel to \vec{n}.
[5P]

2 Lorentz Transformations and the Klein-Gordon Equation

The Klein-Gordon equation can be written as

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} \phi(x)=-\frac{m^{2} c^{2}}{\hbar^{2}} \phi(x), \tag{3}
\end{equation*}
$$

where $\partial_{\mu}=\partial / \partial x^{\mu}$ and $\partial^{\mu}=\partial / \partial x_{\mu}$.

1. Now consider a different inertial frame, described by coordinates $x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}$. Show that

$$
\begin{equation*}
\frac{\partial}{\partial x_{\mu}} \frac{\partial}{\partial x^{\mu}}=\frac{\partial}{\partial x_{\mu}^{\prime}} \frac{\partial}{\partial x^{\prime \mu}} . \tag{4}
\end{equation*}
$$

Hint: Use the chain rule, and the relation defining a Lorentz transformation, $\left(\Lambda^{T} g \Lambda\right)_{\mu \nu}=$ $g_{\mu \nu}$, where $g_{\mu \nu}$ is the Minkowski metric.
2. Now consider a boost in x direction. Show by explicit calculation that $\partial^{2} / \partial(c t)^{2}-\partial^{2} / \partial x^{2}$ is Lorentz invariant, while $\partial^{2} / \partial(c t)^{2}+\partial^{2} / \partial x^{2}$ is not.
3. Show that the plane wave, $\mathrm{e}^{-i(E t-\vec{p} \cdot \vec{x})}$, is Lorentz invariant.
4. For a general solution of the free Klein-Gordon equation we have to consider wave packets. Show that the integration measure $d^{3} p$ is not Lorentz invariant, while $d^{3} p /(2 E)$ is; here \vec{p} is the $3-$ momentum and $E=\sqrt{\vec{p}^{2}+m^{2}}$ is the energy.

