Advanced Quantum Theory (WS 21/22) Homework no. 13 (January 17, 2022)

Please hand in your solution by Monday, January 24!

1 Lorentz Group

The Lorentz group can be defined as the set of all rank–2 tensors Λ that leave the Minkowski metric g invariant,

$$\Lambda^T g \Lambda = g. \tag{1}$$

A proper Lorentz transformation in addition satisfies $\det(\Lambda) = 1$. It can be written as a product of boosts and rotations. A rotation only affects the spatial components of a 4-vector; it has an orthonormal 3×3 matrix \mathcal{O} in the lower-right corner of Λ , with $\Lambda_0^0 = 1$ and $\Lambda_0^i = \Lambda_i^0 = 0$, see eq.(7.5) in class. A boost in x-direction is described by

$$\Lambda = \begin{pmatrix} \gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(2)

see eq.(7.7) in class; here $\beta = v/c$, v being the relative velocity between the two inertial frames one is considering and c the speed of light in vacuum, and $\gamma = 1/\sqrt{1-\beta^2}$. In this exercise we investigate the properties of this group.

- 1. First, show that the Λ satisfying eq.(1) indeed form a group; it is called SO(3,1). [4P].
- 2. Show that the set of all rotations form a subgroup of the Lorentz group; it is called SO(3).
- 3. Show that the set of all rotations around the x axis (i.e. in the (y, z) plane) form a subgroup of the group of all rotations, and hence also a subgroup of the Lorentz group. (This is true for rotations around any fixed axis, of course.) What is the single rotation that results from successive rotations by angles α_1 and α_2 ? [2P]
- 4. Show that the boosts along the x-axis also form a subgroup of the Lorentz group. (Again this is true for boosts along any fixed direction.) What is the single boost that describes successive boosts by β_1 and β_2 ? (This is also known as the relativistic addition theorem of velocities.)
- 5. Finally, show that the set of all boosts does not form a subgroup of the Lorentz group. To that end, consider successive boosts in x and y directions, by β_x and β_y , respectively. Does the order of these boosts matter? In order to show that the resulting product cannot be represented by a single boost in the (x,y)-plane (the z direction evidently doesn't play a role here, and can be neglected), write down the Λ corresponding to a boost in a general direction defined by the unit vector $\vec{n} = (\cos \theta, \sin \theta)$. Hint: Write the spatial 3-vector \vec{x} as a term $\propto \vec{n}$ and a second term $\propto \vec{n}_T$, where \vec{n}_T is orthogonal to \vec{n} ; a boost in \vec{n} direction only affects the component of \vec{x} parallel to \vec{n} . [5P]

2 Lorentz Transformations and the Klein-Gordon Equation

The Klein-Gordon equation can be written as

$$\partial_{\mu}\partial^{\mu}\phi(x) = -\frac{m^2c^2}{\hbar^2}\phi(x), \qquad (3)$$

where $\partial_{\mu} = \partial/\partial x^{\mu}$ and $\partial^{\mu} = \partial/\partial x_{\mu}$.

1. Now consider a different inertial frame, described by coordinates $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$. Show that

$$\frac{\partial}{\partial x_{\mu}} \frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial x'_{\mu}} \frac{\partial}{\partial x'^{\mu}}.$$
 (4)

Hint: Use the chain rule, and the relation defining a Lorentz transformation, $(\Lambda^T g \Lambda)_{\mu\nu} = g_{\mu\nu}$, where $g_{\mu\nu}$ is the Minkowski metric. [2P]

- 2. Now consider a boost in x direction. Show by explicit calculation that $\partial^2/\partial(ct)^2 \partial^2/\partial x^2$ is Lorentz invariant, while $\partial^2/\partial(ct)^2 + \partial^2/\partial x^2$ is not. [2P]
- 3. Show that the plane wave, $e^{-i(Et-\vec{p}\cdot\vec{x})}$, is Lorentz invariant. [1P]
- 4. For a general solution of the free Klein–Gordon equation we have to consider wave packets. Show that the integration measure d^3p is not Lorentz invariant, while $d^3p/(2E)$ is; here \vec{p} is the 3-momentum and $E=\sqrt{\vec{p}^2+m^2}$ is the energy. [3P]