Advanced Quantum Theory (WS 21/22)

Homework no. 14 (January 24, 2022): the last one!
Please hand in your solution by Monday, January 31!

1 Properties of the Pauli Matrices

The Pauli matrices are given by (I expect you to remember these!):

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right) ; \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

where i is the imaginary unit $\left(i^{2}=-1\right)$. Prove the following relations:
1.

$$
\begin{equation*}
\sigma_{k}^{2}=\mathbb{1} \forall k \in\{1,2,3\}, \tag{2}
\end{equation*}
$$

where $\mathbb{1}$ is the 2×2 unit matrix.
2. $\sigma_{k} \sigma_{l}=-\sigma_{l} \sigma_{k} \forall l \neq k$, i.e. $\left\{\sigma_{k}, \sigma_{l}\right\}=0 \forall l \neq k$; here $\{A, B\}$ is the anticommutator of matrices A and B. Show that this implies

$$
\begin{equation*}
\left[\sigma_{l}, \sigma_{k}\right]=2 \sigma_{l} \sigma_{k} \forall l \neq k, \tag{3}
\end{equation*}
$$

where $[A, B]$ is the commutator of A and B.
3.

$$
\begin{equation*}
\left[\sigma_{l}, \sigma_{k}\right]=2 i \sum_{j=1}^{3} \epsilon_{l k j} \sigma_{j} \forall l, k \in\{1,2,3\} \tag{4}
\end{equation*}
$$

where $\epsilon_{i j k}$ is the totally antisymmetric rank -3 tensor, with $\epsilon_{123}=1$. How many different j actually contribute to the sum? Hint: Consider $l=k$ and $l \neq k$ separately, and use the appropriate results from above.
4.

$$
\begin{equation*}
\sigma_{k} \sigma_{l}=\delta_{k l} \mathbb{1}+i \sum_{j=1}^{3} \epsilon_{k l j} \sigma_{j} . \tag{5}
\end{equation*}
$$

Hint: Again treat the cases $k=l$ and $k \neq l$ separately, and use the appropriate results from above.
5.

$$
\begin{equation*}
(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=\vec{a} \cdot \vec{b} \mathbb{1}+i \vec{\sigma} \cdot(\vec{a} \times \vec{b}) . \tag{6}
\end{equation*}
$$

Here \vec{a} and \vec{b} are two arbitrary 3 -vectors (in Euclidean space), and $\vec{\sigma} \cdot \vec{a}=\sum_{i=1}^{3} a_{i} \sigma_{i}$. Hint: Recall that the vector product satisfies $(\vec{a} \times \vec{b})_{i}=\sum_{j, k} \epsilon_{i j k} a_{j} b_{k}$, and use the appropriate result from above.

2 Lorentz Transformations and the Dirac Equation

In class we had considered infinitesimal Lorentz transformations,

$$
\begin{equation*}
\Lambda_{\mu}^{\nu}=g_{\mu}^{\nu}+\Delta \omega_{\mu}^{\nu} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta \omega^{\mu \nu}=-\Delta \omega^{\nu \mu} \tag{8}
\end{equation*}
$$

(only for two upper, or two lower, indices!), such that a 4-vector x transforms like

$$
\begin{equation*}
x \rightarrow x^{\prime}=\Lambda x . \tag{9}
\end{equation*}
$$

We wanted to find the corresponding transformation of the Dirac spinor $\psi(x)$, described by

$$
\begin{equation*}
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x) \tag{10}
\end{equation*}
$$

where $S(\Lambda)$ is a 4×4 matrix acting on the components of ψ. For an infinitesimal transformation we made the ansatz $S=\mathbb{1}_{4 \times 4}+\tau$, where τ is an infinitesimal 4×4 matrix which (of course) also acts on Dirac (spinor) indices. By demanding that $\psi^{\prime}\left(x^{\prime}\right)$ satisfies the Dirac equation in the new frame we derived the first condition on τ :

$$
\begin{equation*}
\left[\gamma^{\alpha}, \tau\right]=\Delta \omega_{\beta}^{\alpha} \gamma^{\beta} \tag{11}
\end{equation*}
$$

Moreover, we normalized S such that $\operatorname{det}(S)=1$, which implies that the trace of τ vanishes,

$$
\begin{equation*}
\operatorname{tr}(\tau)=0 \tag{12}
\end{equation*}
$$

recall that the trace of a matrix is the sum of its diagonal elements. Note that the determinant and trace refer only to the Dirac indices; τ does not have a free Lorentz index.

Show that the ansatz

$$
\begin{equation*}
\tau=-\frac{i}{4} \Delta \omega^{\mu \nu} \sigma_{\mu \nu}=\frac{1}{8} \Delta \omega^{\mu \nu}\left[\gamma_{\mu}, \gamma_{\nu}\right] \tag{13}
\end{equation*}
$$

satisfies conditions (11) and (12). Hint: Prove and use that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for any two matrices A and B.

3 Bonus Question

This is the last tutorial of this class. Go through your notes and ask your tutor to clarify one issue for you.
$[5 \mathrm{P}]^{1}$

[^0]
[^0]: ${ }^{1}$ When computing whether you satisfy the " 50% rule", i.e. are permitted to take the final exam, these bonus points count in the numerator, but not in the denominator.

