Advanced Quantum Theory (WS 21/22) Homework no. 14 (January 24, 2022): the last one!

Please hand in your solution by Monday, January 31!

1 Properties of the Pauli Matrices

The Pauli matrices are given by (I expect you to remember these!):

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{1}$$

where i is the imaginary unit $(i^2 = -1)$. Prove the following relations:

1.

$$\sigma_k^2 = 1 \ \forall k \in \{1, 2, 3\}, \tag{2}$$

where $\mathbb{1}$ is the 2×2 unit matrix.

[2P]

[3P]

2. $\sigma_k \sigma_l = -\sigma_l \sigma_k \ \forall l \neq k$, i.e. $\{\sigma_k, \sigma_l\} = 0 \ \forall l \neq k$; here $\{A, B\}$ is the anticommutator of matrices A and B. Show that this implies

$$[\sigma_l, \sigma_k] = 2\sigma_l \sigma_k \ \forall l \neq k \,, \tag{3}$$

where [A, B] is the commutator of A and B.

3.

$$[\sigma_l, \sigma_k] = 2i \sum_{j=1}^{3} \epsilon_{lkj} \sigma_j \ \forall l, k \in \{1, 2, 3\},$$

$$(4)$$

where ϵ_{ijk} is the totally antisymmetric rank-3 tensor, with $\epsilon_{123} = 1$. How many different j actually contribute to the sum? *Hint*: Consider l = k and $l \neq k$ separately, and use the appropriate results from above.

4.

$$\sigma_k \sigma_l = \delta_{kl} \mathbb{1} + i \sum_{j=1}^3 \epsilon_{klj} \sigma_j.$$
 (5)

Hint: Again treat the cases k = l and $k \neq l$ separately, and use the appropriate results from above. [3P]

5.

$$(\vec{\sigma} \cdot \vec{a}) (\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} \, \mathbb{1} + i \vec{\sigma} \cdot (\vec{a} \times \vec{b}) \,. \tag{6}$$

Here \vec{a} and \vec{b} are two arbitrary 3-vectors (in Euclidean space), and $\vec{\sigma} \cdot \vec{a} = \sum_{i=1}^{3} a_i \sigma_i$. Hint: Recall that the vector product satisfies $\left(\vec{a} \times \vec{b}\right)_i = \sum_{j,k} \epsilon_{ijk} a_j b_k$, and use the appropriate result from above. [4P]

2 Lorentz Transformations and the Dirac Equation

In class we had considered infinitesimal Lorentz transformations,

$$\Lambda^{\nu}_{\ \mu} = g^{\nu}_{\mu} + \Delta\omega^{\nu}_{\ \mu} \tag{7}$$

with

$$\Delta\omega^{\mu\nu} = -\Delta\omega^{\nu\mu} \tag{8}$$

(only for two upper, or two lower, indices!), such that a 4-vector x transforms like

$$x \to x' = \Lambda x \,. \tag{9}$$

We wanted to find the corresponding transformation of the Dirac spinor $\psi(x)$, described by

$$\psi(x) \to \psi'(x') = S(\Lambda)\psi(x), \qquad (10)$$

where $S(\Lambda)$ is a 4×4 matrix acting on the components of ψ . For an infinitesimal transformation we made the ansatz $S = \mathbb{1}_{4\times 4} + \tau$, where τ is an infinitesimal 4×4 matrix which (of course) also acts on Dirac (spinor) indices. By demanding that $\psi'(x')$ satisfies the Dirac equation in the new frame we derived the first condition on τ :

$$[\gamma^{\alpha}, \tau] = \Delta \omega^{\alpha}_{\beta} \gamma^{\beta} \,. \tag{11}$$

Moreover, we normalized S such that det(S) = 1, which implies that the trace of τ vanishes,

$$\operatorname{tr}(\tau) = 0; \tag{12}$$

recall that the trace of a matrix is the sum of its diagonal elements. Note that the determinant and trace refer only to the Dirac indices; τ does not have a free Lorentz index.

Show that the ansatz

$$\tau = -\frac{i}{4}\Delta\omega^{\mu\nu}\sigma_{\mu\nu} = \frac{1}{8}\Delta\omega^{\mu\nu}[\gamma_{\mu}, \gamma_{\nu}] \tag{13}$$

satisfies conditions (11) and (12). Hint: Prove and use that tr(AB) = tr(BA) for any two matrices A and B. [6P]

3 Bonus Question

This is the last tutorial of this class. Go through your notes and ask your tutor to clarify one issue for you. $[5P]^1$

¹When computing whether you satisfy the "50% rule", i.e. are permitted to take the final exam, these bonus points count in the numerator, but not in the denominator.