Advanced Quantum Theory (WS 21/22)

Homework no. 2 (October 18, 2021)

1 Canonical Transformations and Classical Trajectories

In classical Hamiltonian mechanics, a canonical transformation can be generated by a function $g\left(q_{i}, p_{i}\right)$, where the q_{i} are the generalized coordinates and the p_{i} the canonically conjugated momenta. A given function g generates an infinitesimal transformation

$$
\begin{equation*}
q_{i} \rightarrow \bar{q}_{i}=q_{i}+\delta q_{i}=q_{i}+\epsilon \frac{\partial g}{\partial p_{i}}, \quad p_{i} \rightarrow \bar{p}_{i}=p_{i}+\delta p_{i}=p_{i}-\epsilon \frac{\partial g}{\partial q_{i}} \tag{1}
\end{equation*}
$$

where $|\epsilon| \ll 1$ is an otherwise arbitrary constant. The system under consideration, described by the Hamilton function H, is invariant under the transformation (1) iff the Poisson bracket of g and H vanishes, $\{g, H\}=0$.

Here we want to treat eq.(1) as an active transformation, which connects two different points $\left(q_{i}, p_{i}\right)$ and $\left(\bar{q}_{i}, \bar{p}_{i}\right)$ in phase space.

1. Show that if $\left(q_{i}(t), p_{i}(t)\right)$ describes a valid trajectory (i.e. satisfies the equations of motion), and $\{g, H\}=0$, then the transformation (1) generates another valid trajectory, i.e. $\left(\bar{q}_{i}(t), \bar{p}_{i}(t)\right)$ is another valid trajectory.
[4P]
2. Now consider the simple case of a single particle. Convince yourself that finite transformations of one of the Cartesian coordinates, $x_{k} \rightarrow \bar{x}_{k}=x_{k}+\delta$ with arbitrary δ, generate valid trajectories $\left(\bar{x}_{i}(t), p_{i}(t)\right)$ given a valid trajectory $\left(x_{i}(t), p_{i}(t)\right)$, if this transformation leaves the Hamilton function invariant. Hint: What is the generator of this transformation? What does invariance under this transformation imply for the Hamilton function?

2 Canonical Transformation in Quantum Mechanics

We saw in class that the generating function g of a canonical transformation in classical mechanics defines a unitary quantum mechanical operator

$$
\begin{equation*}
\hat{U}_{g}(\xi)=\exp (-i \xi \hat{g} / \hbar) \tag{2}
\end{equation*}
$$

so that a finite active transformation can be described by

$$
\begin{equation*}
\psi\left(q_{i}, t\right) \rightarrow \bar{\psi}\left(q_{i}, t\right)=\hat{U}_{g}(\xi) \psi\left(q_{i}, t\right) \tag{3}
\end{equation*}
$$

Here ψ is the wave function of the system under consideration, the q_{i} are the generalized coordinates, and ξ is an arbitrary real constant.

1. The transformation (3) can be made a bit more explicit by expressing the wave function in terms of eigenfunctions of the hermitean operator \hat{g},

$$
\begin{equation*}
\psi\left(q_{i}, t\right)=\sum_{n} c_{n}(t) \psi_{n}\left(q_{i}\right) \tag{4}
\end{equation*}
$$

with $\hat{g} \psi_{n}=g_{n} \psi_{n}$. The transformed wave function $\bar{\psi}\left(q_{i}, t\right)$ can be expressed analogously, with expansion coefficients $\bar{c}_{n}(t)$. How are the $\bar{c}_{n}(t)$ related to the original $c_{n}(t)$?
2. Now consider a single particle system, and $g=L_{z}$, the z component of orbital angular momentum. As shown in class, this generates rotations around the z-axis. Prove this result in the formalism of eq.(4). Hint: Use the explicit form of the eigenfunctions of \hat{L}_{z}.
3. Now consider a single particle system, and $g=L^{2}$, the square of the orbital angular momentum. Consider three cases: (i) The wave function is an eigenfunction of \hat{L}^{2} and \hat{L}_{z} with fixed quantum numbers l and m; (ii) the wave function is a superposition of eigenfunctions of \hat{L}^{2} and \hat{L}_{z}, with fixed l but different values of m; (iii) the wave function is a superposition of eigenfunctions of \hat{L}^{2} and \hat{L}_{z}, where both l and m take different values. In which of these three cases does the active transformation $\psi \rightarrow \hat{U}_{L^{2}}(\xi) \psi$ corresponds to a physical change? Hint: Recall that the overall phase of the wave function has no physical significance. [3P]

3 Gauge Invariance in Classical Electrodynamics

Classical electrodynamics can be formulated in terms of the electric field \vec{E} and the magnetic field \vec{B}, or equivalently in terms of the scalar potential U and the vector potential \vec{A}. The two sets of quantities are related by

$$
\begin{equation*}
\vec{B}(\vec{x}, t)=\vec{\nabla} \times \vec{A}(\vec{x}, t) ; \quad \vec{E}(\vec{x}, t)=-\vec{\nabla} U(\vec{x}, t)-\frac{\partial \vec{A}(\vec{x}, t)}{\partial t} \tag{5}
\end{equation*}
$$

A gauge transformation is defined by a real function $\lambda(\vec{x}, t)$, such that

$$
\begin{equation*}
\vec{A}(\vec{x}, t) \rightarrow \vec{A}(\vec{x}, t)+\vec{\nabla} \lambda(\vec{x}, t) ; \quad U(\vec{x}, t) \rightarrow U(\vec{x}, t)-\frac{\partial \lambda(\vec{x}, t)}{\partial t} \tag{6}
\end{equation*}
$$

Note that both \vec{A} and U have to be transformed simultaneously. We are using SI units in this problem.

1. Show that the gauge transformation (6) leaves the fields \vec{B}, \vec{E} defined in eq.(5) unchanged. This is the basis of gauge invariance.
[3P]
2. Show that the homogeneous (source-independent) Maxwell equations,

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}(\vec{x}, t)=0 ; \quad \vec{\nabla} \times \vec{E}(\vec{x}, t)=-\frac{\partial B(\vec{x}, t)}{\partial t}, \tag{7}
\end{equation*}
$$

are satisfied automatically if the fields are expressed as in (5).
3. The "Lorenz gauge" is defined by

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}(\vec{x}, t)=-\mu_{0} \epsilon_{0} \frac{\partial U(\vec{x}, t)}{\partial t} \tag{8}
\end{equation*}
$$

Show that this decouples the two inhomogeneous Maxwell equations,

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}(\vec{x}, t)=\rho(\vec{x}, t) / \epsilon_{0} ; \quad \vec{\nabla} \times \vec{B}(\vec{x}, t)=\mu_{0} \vec{j}(\vec{x}, t)+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}(\vec{x}, t)}{\partial t} \tag{9}
\end{equation*}
$$

when the fields are expressed in terms of the potentials; here the charge density ρ and the current density \vec{j} are sources of the fields.
4. The Lagrange function of classical electrodynamics is given by

$$
\begin{equation*}
L=\int d^{3} x\left[\frac{\epsilon_{0}}{2} \vec{E} \cdot \vec{E}-\frac{1}{2 \mu_{0}} \vec{B} \cdot \vec{B}-\rho U+\vec{j} \cdot \vec{A}\right] . \tag{10}
\end{equation*}
$$

Show that the integrand of L (often called the Lagrange density) is not invariant under a gauge transformation (6), if the sources ρ and \vec{j} are assumed to be gauge invariant. However, show that L is gauge invariant, under the usual assumption that surface terms can be ignored. Hint: Use the fact that the current is conserved!
[5P]

