Advanced Quantum Theory (WS 24/25)

Homework no. 2 (October 14, 2024)
To be handed in by Sunday, October 20!

1 Canonical Transformations and Classical Trajectories

In classical Hamiltonian mechanics, a canonical transformation can be generated by a function
9(qi, pi), where the ¢; are the generalized coordinates and the p; the canonically conjugated mo-
menta. A given function g generates an infinitesimal transformation

Qi—>(ji=qi+5qz‘=qi+égfg, pi%ﬁizpi+5pizpi—€@7 (1)
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where |e| < 1 is an otherwise arbitrary constant.

Here we want to treat eq.(1) as an active transformation, which connects two different points
(¢i,p;) and (g;,p;) in phase space. The system under consideration, described by the Hamilton
function H, is invariant under this transformation iff the Poisson bracket of g and H vanishes,

{9,H} =0.

1. Show that if (¢;(t),pi(t)) describes a valid trajectory (i.e. satisfies the equations of mo-
tion), and {g, H} = 0, then the transformation (1) generates another valid trajectory, i.e.
(g:(t), pi(t)) is another valid trajectory. [4P]

2. Now consider the simple case of a single particle. Convince yourself that finite transforma-
tions of one of the Cartesian coordinates, xy — T = x) + J with arbitrary d, generate valid
trajectories (Z;(t),pi(t)) given a valid trajectory (z;(t),p;(t)), if this transformation leaves
the Hamilton function invariant. Hint: What is the generator of this transformation? What
does invariance under this transformation imply for the Hamilton function? [3P]

2 Canonical Transformation in Quantum Mechanics

We saw in class that the generating function g of a canonical transformation in classical mechanics
defines a unitary quantum mechanical operator

Uy(€) = exp (—i&g/h) (2)
so that a finite active transformation can be described by
D(gist) = (airt) = Ug ()i t) - (3)

Here v is the wave function of the system under consideration, the ¢; are the generalized coordi-
nates, and £ is an arbitrary real constant.

1. The transformation (3) can be made a bit more explicit by expressing the wave function in
terms of eigenfunctions of the hermitean operator g,

w(in t) = Z Cn(t)wn(%) ) (4)

with §v, = gntPn. The transformed wave function 9)(g;,t) can be expressed analogously,
with expansion coefficients ¢, (t). How are the ¢, (¢) related to the original ¢, (t)? [3P]

2. Now consider a single particle system, and ¢ = L., the z component of orbital angular
momentum. As shown in class, this generates rotations around the z—axis. Prove this result
in the formalism of eq.(4). Hint: Use the explicit form of the eigenfunctions of L,. [3P]



3. Now consider a single particle system, and g = L?, the square of the orbital angular mo-
mentum. Consider three cases: (i) The wave function is an eigenfunction of L? and L. with
fixed quantum numbers ! and m; (i) the wave function is a superposition of eigenfunctions
of L? and L., with fixed I but different values of m; (iii) the wave function is a superposition
of eigenfunctions of L2 and L., where both [ and m take different values. In which of these
three cases does the active transformation ¢ — Uy (€)v corresponds to a physical change?
Hint: Recall that the overall phase of the wave function has no physical significance. [3P]

3 Gauge Invariance in Classical Electrodynamics

Classical electrodynamics can be formulated in terms of the electric field E and the magnetic field
B, or equivalently in terms of the scalar potential U and the vector potential A. The two sets of
quantities are related by
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A gauge transformation is defined by a real function A(Z,t), such that

A(Z,t) = A(Z,t) + VA, 1); U@, t) = U, t) — axg,t) . (6)

Note that both A and U have to be transformed simultaneously. We are using SI units in this
problem.

1. Show that the gauge transformation (6) leaves the fields B, E defined in eq.(5) unchanged.
This is the basis of gauge invariance. [3P]

2. Show that the homogeneous (source—independent) Maxwell equations,

= = R O0B(Z,t
V- B(Z,t) =0; V><E(9E',t):—$7 (7)
are satisfied automatically if the fields are expressed as in (5). [4P]
3. The “Lorenz gauge” is defined by
oU(Z,t)

Show that this decouples the two inhomogeneous Maxwell equations,

.o . . - OE(Z,t
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when the fields are expressed in terms of the potentials; here the charge density p and the
current density j are sources of the fields. [4P]

4. The Lagrange function of classical electrodynamics is given by

L/de[“E.Elé-épUﬁ-ﬁ . (10)
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Show that the integrand of L (often called the Lagrange density) is not invariant under a
gauge transformation (6), if the sources p and ; are assumed to be gauge invariant. However,
show that the action S is gauge invariant, under the usual assumption that surface terms
can be ignored. Hint: Use the fact that the current is conserved! [5P]



