
Advanced Quantum Theory (WS 21/22)
Homework no. 2 (October 18, 2021)

1 Canonical Transformations and Classical Trajectories

In classical Hamiltonian mechanics, a canonical transformation can be generated by a function
g(qi, pi), where the qi are the generalized coordinates and the pi the canonically conjugated mo-
menta. A given function g generates an infinitesimal transformation

qi → q̄i = qi + δqi = qi + ǫ
∂g

∂pi
, pi → p̄i = pi + δpi = pi − ǫ

∂g

∂qi
, (1)

where |ǫ| ≪ 1 is an otherwise arbitrary constant. The system under consideration, described by
the Hamilton function H , is invariant under the transformation (1) iff the Poisson bracket of g
and H vanishes, {g,H} = 0.

Here we want to treat eq.(1) as an active transformation, which connects two different points
(qi, pi) and (q̄i, p̄i) in phase space.

1. Show that if (qi(t), pi(t)) describes a valid trajectory (i.e. satisfies the equations of mo-
tion), and {g,H} = 0, then the transformation (1) generates another valid trajectory, i.e.
(q̄i(t), p̄i(t)) is another valid trajectory. [4P]

2. Now consider the simple case of a single particle. Convince yourself that finite transforma-
tions of one of the Cartesian coordinates, xk → x̄k = xk + δ with arbitrary δ, generate valid
trajectories (x̄i(t), pi(t)) given a valid trajectory (xi(t), pi(t)), if this transformation leaves
the Hamilton function invariant. Hint: What is the generator of this transformation? What
does invariance under this transformation imply for the Hamilton function? [3P]

2 Canonical Transformation in Quantum Mechanics

We saw in class that the generating function g of a canonical transformation in classical mechanics
defines a unitary quantum mechanical operator

Ûg(ξ) = exp (−iξĝ/~) , (2)

so that a finite active transformation can be described by

ψ(qi, t) → ψ̄(qi, t) = Ûg(ξ)ψ(qi, t) . (3)

Here ψ is the wave function of the system under consideration, the qi are the generalized coordi-
nates, and ξ is an arbitrary real constant.

1. The transformation (3) can be made a bit more explicit by expressing the wave function in
terms of eigenfunctions of the hermitean operator ĝ,

ψ(qi, t) =
∑

n

cn(t)ψn(qi) , (4)

with ĝψn = gnψn. The transformed wave function ψ̄(qi, t) can be expressed analogously,
with expansion coefficients c̄n(t). How are the c̄n(t) related to the original cn(t)? [3P]

2. Now consider a single particle system, and g = Lz, the z component of orbital angular
momentum. As shown in class, this generates rotations around the z−axis. Prove this result
in the formalism of eq.(4). Hint: Use the explicit form of the eigenfunctions of L̂z. [3P]
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3. Now consider a single particle system, and g = L2, the square of the orbital angular mo-
mentum. Consider three cases: (i) The wave function is an eigenfunction of L̂2 and L̂z with
fixed quantum numbers l and m; (ii) the wave function is a superposition of eigenfunctions
of L̂2 and L̂z, with fixed l but different values of m; (iii) the wave function is a superposition
of eigenfunctions of L̂2 and L̂z, where both l and m take different values. In which of these
three cases does the active transformation ψ → ÛL2(ξ)ψ corresponds to a physical change?
Hint: Recall that the overall phase of the wave function has no physical significance. [3P]

3 Gauge Invariance in Classical Electrodynamics

Classical electrodynamics can be formulated in terms of the electric field ~E and the magnetic field
~B, or equivalently in terms of the scalar potential U and the vector potential ~A. The two sets of
quantities are related by

~B(~x, t) = ~∇× ~A(~x, t) ; ~E(~x, t) = −~∇U(~x, t)−
∂ ~A(~x, t)

∂t
. (5)

A gauge transformation is defined by a real function λ(~x, t), such that

~A(~x, t) → ~A(~x, t) + ~∇λ(~x, t) ; U(~x, t) → U(~x, t)−
∂λ(~x, t)

∂t
. (6)

Note that both ~A and U have to be transformed simultaneously. We are using SI units in this
problem.

1. Show that the gauge transformation (6) leaves the fields ~B, ~E defined in eq.(5) unchanged.
This is the basis of gauge invariance. [3P]

2. Show that the homogeneous (source–independent) Maxwell equations,

~∇ · ~B(~x, t) = 0 ; ~∇× ~E(~x, t) = −
∂B(~x, t)

∂t
, (7)

are satisfied automatically if the fields are expressed as in (5). [4P]

3. The “Lorenz gauge” is defined by

~∇ · ~A(~x, t) = −µ0ǫ0
∂U(~x, t)

∂t
. (8)

Show that this decouples the two inhomogeneous Maxwell equations,

~∇ · ~E(~x, t) = ρ(~x, t)/ǫ0 ; ~∇× ~B(~x, t) = µ0
~j(~x, t) + µ0ǫ0

∂ ~E(~x, t)

∂t
, (9)

when the fields are expressed in terms of the potentials; here the charge density ρ and the
current density ~j are sources of the fields. [4P]

4. The Lagrange function of classical electrodynamics is given by

L =

∫

d3x

[

ǫ0
2
~E · ~E −

1

2µ0

~B · ~B − ρU +~j · ~A

]

. (10)

Show that the integrand of L (often called the Lagrange density) is not invariant under a
gauge transformation (6), if the sources ρ and ~j are assumed to be gauge invariant. However,
show that L is gauge invariant, under the usual assumption that surface terms can be ignored.
Hint: Use the fact that the current is conserved! [5P]
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