Advanced Quantum Theory (WS 21/22)

Homework no. 3 (October 25, 2021)
Please mail (preferably as PDF) your solution to your tutor by Monday, November 1!

1 Particle in External Electromagnetic Field

In classical mechanics the Lagrange function describing the interaction of a point particle with mass m and charge q with given electromagnetic fields is given by (using Cartesian coordinates):

$$
\begin{equation*}
L=\frac{1}{2} m(\dot{\vec{x}})^{2}-q(U-\dot{\vec{x}} \cdot \vec{A}) \tag{1}
\end{equation*}
$$

here U is the scalar potential and \vec{A} is the vector potential.

1. Determine the canonical momentum \vec{P} associated to \vec{x}. How is it related to the linear momentum \vec{p} ?
2. Show that the corresponding Hamilton function can be written as

$$
\begin{equation*}
H=\frac{1}{2 m}(\vec{P}-q \vec{A})^{2}+q U \tag{2}
\end{equation*}
$$

Is this equal to the total energy of the particle?
3. Show that the Hamiltonian equation of motion $\dot{\vec{P}}=\{\vec{P}, H\}$ reproduces the equation of motion according to the Lorentz force,

$$
\begin{equation*}
\dot{\vec{p}}=q[-\vec{\nabla} U-\partial \vec{A} / \partial t+\dot{\vec{x}} \times(\vec{\nabla} \times \vec{A})] . \tag{3}
\end{equation*}
$$

Hint: use the identity

$$
\dot{\vec{x}} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\dot{\vec{x}} \cdot \vec{A})-(\dot{\vec{x}} \cdot \nabla) \vec{A},
$$

and prove and use the relation

$$
\dot{\vec{A}}=d \vec{A} / d t=\partial \vec{A} / \partial t+(\dot{\vec{x}} \cdot \vec{\nabla}) \vec{A}
$$

4. Use the appropriate Poisson brackets to argue that in quantum mechanics, $\hat{\vec{P}}$, and not the operator of linear momentum $\hat{\vec{p}}$, is represented by $-i \hbar \vec{\nabla}$.

2 Charge Conservation

In classical electrodynamics the conservation of electric charge is equivalent to the continuity equation relating the charge density ρ to the current density \vec{j},

$$
\begin{equation*}
\partial \rho / \partial t+\vec{\nabla} \cdot \vec{j}=0 \tag{4}
\end{equation*}
$$

Here we wish to analyze this continuity equation in the context of non-relativistic quantum mechanics.

1. The charge density is quite obviously given by

$$
\begin{equation*}
\rho(\vec{x}, t)=q|\psi(\vec{x}, t)|^{2} \tag{5}
\end{equation*}
$$

where q is the electric charge of the particle. Use the results from the first problem of this sheet to argue that the current density is given by

$$
\begin{equation*}
\vec{j}(\vec{x}, t)=\frac{q}{2 m}\left[\psi^{*}(\vec{x}, t)(-i \hbar \vec{\nabla}-q \vec{A}(\vec{x}, t)) \psi(\vec{x}, t)+h . c .\right], \tag{6}
\end{equation*}
$$

where h.c. stands for the hermitean conjugate of the first term.
2. Show that ρ defined in (5) and \vec{j} defined in (6) satisfy the continuity equation (4). Hint: Use the Schrödinger equation!
3. Show that ρ and \vec{j} are invariant under a gauge transformation, where simultaneously [see (2.44) in class]:

$$
\begin{equation*}
\vec{A}(\vec{x}, t) \rightarrow \vec{A}(\vec{x}, t)+\nabla \lambda(\vec{x}, t) \quad \text { and } \quad \psi(\vec{x}, t) \rightarrow \exp \left(i \frac{q}{\hbar} \lambda(\vec{x}, t)\right) \psi(\vec{x}, t) \tag{7}
\end{equation*}
$$

3 Some Gaussian Integrals

In this exercise we compute some definite Gaussian integrals, allowing for complex parameters.

1. Show by finding the primitive of the integrand that

$$
\begin{equation*}
I_{1}(a)=\int_{0}^{\infty} d x x \mathrm{e}^{-a x^{2}}=\frac{1}{2 a} \tag{8}
\end{equation*}
$$

where a is a complex constant with $\Re e(a) \geq 0$. (Strictly speaking the result holds only for $\Re e(a)>0$, but it can be extended to $\Re e(a)=0$, i.e. purely complex a. What goes wrong if $\Re e(a)<0$?)
[2P]
2. Now consider the seemingly simpler integral

$$
\begin{equation*}
I_{0}(a)=\int_{-\infty}^{\infty} \mathrm{e}^{-a x^{2}} \tag{9}
\end{equation*}
$$

Here the primitive of the integrand cannot be expressed as an elementary function. Consider instead

$$
\left[I_{0}(a)\right]^{2}=\int_{-\infty}^{\infty} d x \mathrm{e}^{-a x^{2}} \int_{-\infty}^{\infty} d y \mathrm{e}^{-a y^{2}}
$$

Hint: Use polar coordinates, $x=r \cos \phi, y=r \sin \phi$; the integral over r can then be reduced to I_{1} of (8).
3. Compute

$$
I_{2}(a)=\int_{-\infty}^{\infty} d x x^{2} \mathrm{e}^{-a x^{2}}
$$

by taking an appropriate derivative of $I_{0}(a)$.
4. Finally, show that

$$
I_{0}(a, b)=\int_{-\infty}^{\infty} d x \mathrm{e}^{-a x^{2}+b x}=\mathrm{e}^{b^{2} /(4 a)} \sqrt{\frac{\pi}{a}}
$$

where a, b are complex constants with $\Re e(a) \geq 0$. Hint: Complete the square in the exponent, and use the result for $I_{0}(a)$!

