Advanced Quantum Theory (WS 24/25) Homework no. 3 (October 21, 2024)

To be handed in by Sunday, October 27!

1 Particle in External Electromagnetic Field

In classical mechanics the Lagrange function describing the interaction of a point particle with mass m and charge q with given electromagnetic fields is given by (using Cartesian coordinates):

$$L = \frac{1}{2}m\left(\dot{\vec{x}}\right)^2 - q\left(V - \dot{\vec{x}} \cdot \vec{A}\right); \tag{1}$$

here V is the scalar potential and \vec{A} is the vector potential.

- 1. Determine the canonical momentum \vec{P} associated to \vec{x} . How is it related to the linear momentum \vec{p} ? [2P]
- 2. Show that the corresponding Hamilton function can be written as

$$H = \frac{1}{2m} \left(\vec{P} - q\vec{A} \right)^2 + qV. \tag{2}$$

Is this equal to the total energy of the particle?

3. Show that the Hamiltonian equation of motion $\dot{\vec{P}} = \{\vec{P}, H\}$ reproduces the equation of motion according to the Lorentz force,

$$\dot{\vec{p}} = q \left[-\vec{\nabla}V - \partial \vec{A}/\partial t + \dot{\vec{x}} \times \left(\vec{\nabla} \times \vec{A} \right) \right]. \tag{3}$$

Hint: use the identity

$$\dot{\vec{x}} \times \left(\vec{\nabla} \times \vec{A} \right) = \vec{\nabla} \left(\dot{\vec{x}} \cdot \vec{A} \right) - \left(\dot{\vec{x}} \cdot \vec{\nabla} \right) \vec{A} \,,$$

and prove and use the relation

$$\dot{\vec{A}} = d\vec{A}/dt = \partial\vec{A}/\partial t + \left(\dot{\vec{x}}\cdot\vec{\nabla}\right)\vec{A}\,.$$

[6P]

[3P]

4. Use the appropriate Poisson brackets to argue that in quantum mechanics, $\hat{\vec{P}}$, and not the operator of linear momentum $\hat{\vec{p}}$, is represented by $-i\hbar\vec{\nabla}$. [2P]

2 Charge Conservation

In classical electrodynamics the conservation of electric charge is equivalent to the continuity equation relating the charge density \vec{j} ,

$$\partial \rho / \partial t + \vec{\nabla} \cdot \vec{j} = 0. \tag{4}$$

Here we wish to analyze this continuity equation in the context of non–relativistic quantum mechanics.

1. The charge density is quite obviously given by

$$\rho(\vec{x},t) = q \left| \psi(\vec{x},t) \right|^2, \tag{5}$$

where q is the electric charge of the particle. Use the results from the first problem of this sheet to argue that the current density is given by

$$\vec{j}(\vec{x},t) = \frac{q}{2m} \left[\psi^*(\vec{x},t) \left(-i\hbar \vec{\nabla} - q\vec{A}(\vec{x},t) \right) \psi(\vec{x},t) + h.c. \right] , \tag{6}$$

where h.c. stands for the hermitean conjugate of the first term.

- 2. Show that ρ defined in (5) and \vec{j} defined in (6) satisfy the continuity equation (4). Hint: Use the Schrödinger equation! [4P]
- 3. Show that ρ and \vec{j} are invariant under a gauge transformation, where simultaneously [see (2.44) in class]:

$$\vec{A}(\vec{x},t) \to \vec{A}(\vec{x},t) + \nabla \lambda(\vec{x},t) \quad \text{and} \quad \psi(\vec{x},t) \to \exp\left(i\frac{q}{\hbar}\lambda(\vec{x},t)\right)\psi(\vec{x},t) \,.$$
 (7)

[3P]

[2P]

[2P]

3 Some Gaussian Integrals

In this exercise we compute some definite Gaussian integrals, allowing for complex parameters.

1. Show by finding the primitive of the integrand that

$$I_1(a) = \int_0^\infty dx \, x e^{-ax^2} = \frac{1}{2a},$$
 (8)

where a is a complex constant with $\Re e(a) \geq 0$. (Strictly speaking the result holds only for $\Re e(a) > 0$, but it can be extended to $\Re e(a) = 0$, i.e. purely complex a. What goes wrong if $\Re e(a) < 0$?)

2. Now consider the seemingly simpler integral

$$I_0(a) = \int_{-\infty}^{\infty} dx \, e^{-ax^2} \,.$$
 (9)

Here the primitive of the integrand cannot be expressed as an elementary function. Consider instead

$$[I_0(a)]^2 = \int_{-\infty}^{\infty} dx \, e^{-ax^2} \int_{-\infty}^{\infty} dy \, e^{-ay^2}.$$

Hint: Use polar coordinates, $x = r \cos \phi$, $y = r \sin \phi$; the integral over r can then be reduced to I_1 of (8).

3. Compute

$$I_2(a) = \int_{-\infty}^{\infty} dx \, x^2 \mathrm{e}^{-ax^2} \,,$$

by taking an appropriate derivative of $I_0(a)$.

4. Finally, show that

$$I_0(a,b) = \int_{-\infty}^{\infty} dx \, e^{-ax^2 + bx} = e^{b^2/(4a)} \sqrt{\frac{\pi}{a}}$$

where a, b are complex constants with $\Re e(a) \geq 0$. Hint: Complete the square in the exponent, and use the result for $I_0(a)$! [3P]