Advanced Quantum Theory (WS 21/22)
 Homework no. 8 (November 29, 2021)

Please hand in your solution by Santa Claus day! (Monday, December 6.)

1 Rate for (nP) to (n'S) Transitions

In this problem we will explicitly compute the rate for spontaneous transitions from a $(n \mathrm{P})$ state to the $\left(n^{\prime} \mathrm{S}\right)$ state in a hydrogen-like atom, for $n \in 2,3, n^{\prime} \in 1,2, n>n^{\prime}$. Starting point are eqs.(4.45) and (4.50) derived in class:

$$
\begin{equation*}
\Gamma_{f i}=\frac{\alpha_{\mathrm{em}}}{2 \pi} \omega_{i f} \int d \Omega_{\gamma}\left|\mathcal{M}_{f i}\right|^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{M}_{f i}=-\frac{\omega_{i f}}{c}\langle f| \vec{\epsilon} \cdot \vec{x}_{e}|i\rangle . \tag{2}
\end{equation*}
$$

1. In order to evaluate the matrix element, we need an explicit expression for the polarization vector of the emitted photon, $\vec{\epsilon}$. Write the wave vector of the emitted photon as $\vec{k}_{\gamma}=\left|\vec{k}_{\gamma}\right|\left(\sin \theta_{\gamma} \sin \phi_{\gamma}, \sin \theta_{\gamma} \cos \phi_{\gamma}, \cos \theta_{\gamma}\right)$. Show that a basis for the polarization vector of the photon is then spanned by the two vectors $\vec{\epsilon}_{1}=\left(\cos \phi_{\gamma},-\sin \phi_{\gamma}, 0\right)$ and $\vec{\epsilon}_{2}=$ $\left(\sin \phi_{\gamma} \cos \theta_{\gamma}, \cos \phi_{\gamma} \cos \theta_{\gamma},-\sin \theta_{\gamma}\right)$. Hint: Show that $\vec{\epsilon}_{i} \cdot \vec{\epsilon}_{k}=\delta_{i k}$ and $\vec{\epsilon}_{i} \cdot \vec{k}_{\gamma}=0$, for $i, k \in\{1,2\}$.
2. Now we want to compute the angular parts of the integrals needed. Note that the outer integral in (1) is over the angular variables $\theta_{\gamma}, \phi_{\gamma}$, while the inner integral, which is implicit in (2), is over the angular variables of the electron, defined via

$$
\begin{equation*}
\vec{x}_{e}=r_{e}\left(\sin \theta_{e} \sin \phi_{e}, \sin \theta_{e} \cos \phi_{e}, \cos \theta_{e}\right) . \tag{3}
\end{equation*}
$$

As a first step, prove the following relations:

$$
\begin{align*}
\vec{x}_{e} \cdot \vec{\epsilon}_{1} & =r_{e} \sin \theta_{e} \sin \left(\phi_{e}-\phi_{\gamma}\right) \\
\vec{x}_{e} \cdot \vec{\epsilon}_{2} & =r_{e}\left[\sin \theta_{e} \cos \theta_{\gamma} \cos \left(\phi_{e}-\phi_{\gamma}\right)-\cos \theta_{e} \sin \theta_{\gamma}\right] . \tag{2P}
\end{align*}
$$

3. In order to evaluate the angular integrals, we also need explicit expressions for the wave function. The normalized angular wave function for the final state is trivial, $\langle f| \rightarrow 1 / \sqrt{4 \pi}$. The angular part of the wave function of the initial state depends on the \hat{L}_{z} quantum number m_{i} :

$$
\begin{equation*}
|i\rangle \rightarrow \sqrt{\frac{3}{8 \pi}} \mathrm{e}^{i m_{i} \phi_{e}} f_{m_{i}}\left(\theta_{e}\right) \tag{4}
\end{equation*}
$$

with $f_{m_{i}}=-m_{i} \sin \theta_{e}$ for $\left|m_{i}\right|=1$ and $f_{m_{i}}=\sqrt{2} \cos \theta_{e}$ for $m_{i}=0$. Evaluate explicitly the angular integrals in eq.(1) for $\vec{\epsilon}=\vec{\epsilon}_{1}$ and $\vec{\epsilon}=\vec{\epsilon}_{2}$. Hint: You have to first perform the integrals over ϕ_{e} and θ_{e}, take the absolute value squared of the result, and then integrate over ϕ_{γ} and θ_{γ}. It is easier to express all ϕ dependence through complex exponentials. The integral over ϕ_{γ} is always trivial, i.e. simply gives a factor 2π.
4. In order to compute the total decay rate, the contributions from both polarization states of the photon have to be added incoherently (why?). Show that after this summation, which simply means adding the two contributions evaluated in the previous step, the decay rate is independent of m_{i}. Give a physical reason for this result.
[3P]
5. Next, the radial part of the inner integral in eq.(1) has to be evaluated. To that end, you need the following expressions for the radial part $R_{n l}\left(r_{e}\right)$ of the wave function, normalized such that $\int_{0}^{\infty} d r_{e} r_{e}^{2}\left|R_{n l}\left(r_{e}\right)\right|^{2}=1$:

$$
\begin{aligned}
R_{10}\left(r_{e}\right) & =\frac{2}{a_{0}^{3 / 2}} \mathrm{e}^{-r_{e} / a_{0}} \\
R_{20}\left(r_{e}\right) & =\frac{1}{\sqrt{2} a_{0}^{3 / 2}}\left(1-\frac{r_{e}}{2 a_{0}}\right) \mathrm{e}^{-r_{e} /\left(2 a_{0}\right)} \\
R_{21}\left(r_{e}\right) & =\frac{1}{2 \sqrt{6} a_{0}^{3 / 2}} \frac{r_{e}}{a_{0}} \mathrm{e}^{-r_{e} /\left(2 a_{0}\right)} \\
R_{31}\left(r_{e}\right) & =\frac{4 \sqrt{2}}{27 \sqrt{3} a_{0}^{3 / 2}} \frac{r_{e}}{a_{0}}\left(1-\frac{r_{e}}{6 a_{0}}\right) \mathrm{e}^{-r_{e} /\left(3 a_{0}\right)}
\end{aligned}
$$

Here a_{0} is the Bohr radius. Evaluate the radial part of the integral in (2) for the following transitions: (i) (2P) \rightarrow (1S); (ii) (3P) \rightarrow (1S); (iii) (3P) \rightarrow (2S). Hint: Prove (by induction) and use the following result when evaluating the integrals:

$$
\int_{0}^{\infty} x^{n} \mathrm{e}^{-x / x_{0}} d x=n!\left(x_{0}\right)^{n+1}
$$

You should find that the matrix element for $(2 \mathrm{P}) \rightarrow(1 \mathrm{~S})$ transitions is significantly larger than that for $(3 \mathrm{P}) \rightarrow(1 \mathrm{~S})$ transitions, even though the $(3 \mathrm{P})$ state is 50% larger than the $(2 \mathrm{P})$ state, and should thus naively have a larger dipole moment. (3P) $\rightarrow(2 \mathrm{~S})$ transitions have the largest matrix element.
[10P]
6. Finally, show that squaring the matrix element and including the factor $\omega_{i f}^{3}$ in the transition rate gives an about 7.5 times larger rate for $(3 \mathrm{P}) \rightarrow(1 \mathrm{~S})$ transitions than for $(3 \mathrm{P}) \rightarrow(2 \mathrm{~S})$; moreover, the $(3 \mathrm{P})$ state has a more than 3 times longer lifetime than the $(2 \mathrm{P})$ state. $[\mathbf{2 P}]$

