
Advanced Quantum Theory (WS 24/25)
Homework no. 8 (November 25, 2024)
Please hand in by Sunday, December 1!

Quickies

Q1: (i) Why does Fermi’s Golden Rule “only” describe the rate (per time) of some transition,
not its absolute probability? [1P]

Q2: Fermi’s Golden Rule contains a δ−“function” ensuring energy conservation. As given, it
therefore predicts a transition rate that is either zero or infinite. List three possibilities which
allow to remove this δ−“function” (by integration) in the physically observable rate. [3P]

Q3: Under what condition does the “single mode” approximation work in a scattering problem,
i.e. when can one model the incoming particles via a single plane wave? [1P]

1) Wave Packet

In this problem we will review some properties of wave packets. Let the wave function be defined
by

ψ(x⃗, t) =

∫
d3k

(2π)3
a(k⃗)ei(k⃗·x⃗−ω(|⃗k|)t) ; (1)

in quantum mechanics,
ω(|⃗k|) = E(|⃗k|)/ℏ , (2)

E being the energy of the mode, which we assume to depend only on the absolute value |⃗k|.

1. The phase velocity is the velocity with which a single mode in the integrand in (1) propagates.
Show that it is given by

v⃗ph = e⃗k⃗
ω(|⃗k|)
|⃗k|

, (3)

where e⃗k⃗ = k⃗/|⃗k| is the unit vector in k⃗ direction. [2P]

2. The group velocity is the velocity with which the (center of) the wave packet propagates.
Show that it is given by

v⃗gr = e⃗k⃗0

dω

d|⃗k|

∣∣∣∣∣
k⃗=k⃗0

, (4)

where k⃗0 is the center of the wave function a(k⃗) in k⃗−space. Hint: Assume that a(k⃗) is

narrowly peaked around k⃗ = k⃗0. You can thus write k⃗ = k⃗0 + δ⃗, with |δ⃗| ≪ |⃗k0|. Show that
the wave function can then approximately be written as

ψ(x⃗, t) ≃ eik⃗0·[x⃗−v⃗ph(|⃗k0|)t]
∫

d3δ

(2π)3
a(k⃗0 + δ⃗)eiδ⃗·(x⃗−v⃗grt) . (5)

[3P]

3. Show that in the same approximation,

ψ(x⃗, t) ≃ ψ(x⃗− v⃗grt, 0)e
itk⃗0·[v⃗gr−v⃗ph(|⃗k0|)] . (6)

[2P]
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4. Compute the phase and group velocities for (i) a photon, where E(|⃗k|) = ℏc|⃗k|, and (ii) a

free massive particle with massM , where E(|⃗k|) = ℏ2k⃗2/(2M). Show that in the latter case,

the phase factor in eq.(6) is eiE(|⃗k0|)t/ℏ. [3P]

5. Finally, compute the phase and group velocities for a relativistic particle, where E(|⃗k|) =√
M2c4 + ℏ2k⃗2c2, M being the rest mass of the particle and c the speed of light. Show that

the limit M → 0 reproduces the results for the phase and group velocity of a photon derived
in the previous subproblem. The limit M2 ≫ ℏ2k⃗2/c2 reproduces the above non–relativistic

result for the group velocity. What happens to the relativistic phase velocity as |⃗k| → 0?
[4P]

2) Scattering on a Constant Potential

Here we want to compute the scattering cross section in Born approximation on a constant,
spherically symmetric potential, V (x⃗) = V0 for |x⃗| < r0 and V (x⃗) = 0 for |x⃗| ≥ r0. Recall that

dσ

dΩ
= |fk⃗(θ, ϕ)|

2 , (7)

where in Born approximation, and for a spherically symmetric potential,

fk⃗(θ) = − 2M

|q⃗|ℏ2

∫ ∞

0

V (r′)r′ sin(|q⃗|r′)dr′ . (8)

Here M is the mass of the scattering particle, and ℏq⃗ = p⃗f − p⃗i is the momentum exchange.

1. Evaluate the scattering amplitude fk⃗ explicitly for the case at hand. Show that it approaches
a constant ∝ r30 as |q⃗| → 0. [5P]

2. Plot the cross section dσ/d cos θ. Show graphically that it has infinitely many minima and
maxima as |q⃗| becomes large. [4P]

3. The Born approximation is valid only if the scattered (spherical) wave is small compared to
the incoming (plane) wave in magnitude. Our expression for the scattered wave is strictly
valid only for large distance from the scattering center, but let’s push the limit a bit and use
the expression at |x⃗| = r0. Show that the validity of the Born approximation then requires

|fk⃗(θ, ϕ)| ≪ r0

Further show that in the case at hand this is equivalent to

M |V0|r20
ℏ2

≪ 1 ,

when considering small momentum transfer. Note: A slightly more careful treatment gives
the same condition! [3P]
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