Advanced Theoretical Astro–Particle Physics (WS 22/23) Homework no. 11 (January 11, 2023)

To be completed by: Thursday, January 19, 2023.

1 Annihilation Just Below a Resonance

The averaged annihilation cross section of Dark Matter particles can be written as

$$\langle \sigma v \rangle = N(v_0) \int_0^\infty dv \, v^2(\sigma v) \,\mathrm{e}^{-v^2/v_0^2} \,, \tag{1}$$

where a Gaussian distribution in the relative cms velocity v has been assumed, with typical velocity v_0 .

1. Show that

$$N(v_0) = \frac{4}{v_0^3 \sqrt{\pi}},$$
 (2)

from the requirement that the average of a constant (velocity-independent) $\sigma v = \Sigma = \text{const should be given by } \Sigma$.

2. Here we are interested in WIMP annihilation very close (and just below) an *s*-channel resonance. Let m_M and Γ_M be the mass and width of the resonance (i.e. of the particle mediating the annihilation). Show that for (*i*) annihilation of scalar WIMPs through a scalar resonance into an SM $f\bar{f}$ pair; (*ii*) annihilation of Dirac WIMPs through a vector resonance into an SM $f\bar{f}$ pair the cross section for $v \ll 1$ (i.e. for non-relativistic WIMPs) can be written as

$$\sigma v \simeq \frac{\sigma_0}{\left(v^2 - 8\delta\right)^2 + \gamma^2} \,. \tag{3}$$

Here $\sigma_0 \rightarrow \text{const.}$ as $v \rightarrow 0$, and the dimensionless quantities δ and γ are defined via

$$m_M = 2m_\chi(1+\delta), \quad \gamma = \frac{\Gamma_M}{m_M},$$
(4)

 m_{χ} being the mass of the WIMP.

3. We are interested in scenarios where both δ and γ are much less than 1. Show that in this case

$$\langle \sigma v \rangle \propto \frac{\sqrt{\delta}}{\gamma v_0^3}$$
 (5)

for $v_0^2 \gtrsim 8\delta$, while

$$\langle \sigma v \rangle \propto \frac{1}{\delta^2}$$
 (6)

for $v_0^2 \ll 8\delta$; in the latter case the result is independent of γ (as long as $\gamma \lesssim \delta$) and v_0 .