
Advanced Theoretical Astro–Particle Physics (WS 22/23)
Homework no. 13 (January 27, 2023)

To be completed by: Thursday, February 2, 2023.

1 Elastic forward scattering: kinematics

In class we saw that the diffractive index of a particle traveling in a medium is related to
its forward scattering amplitude, f(θ → 0), with

|f(θ)|2 = dσ

dΩ
; (1)

here dΩ = dφd cos θ is the differential angle in the “laboratory” frame where the medium
particle is at rest.

On the other hand, the usual Feynman amplitude F is related to the differential scat-
tering cross section in the center–of–mass (cms) frame:

dσ

dΩ∗
=

|F |2
64π2s

, (2)

where s is the Mandelstam variable. Here we review how to derive dσ/dΩ from dσ/dΩ∗.
We are interested in massless particles (photons or neutrinos) scattering on a massive
component of the medium, with mass mf

1. Compute s in terms of the energy E of the incoming massless particle in the cms
frame.

2. Since the angle φ is the same in both frames, we only need to determine d cos θ∗/d cos θ.
To that end, we need to determine the Lorentz boost that takes us between the two
frames. Write p = E(1, 0, 0, 1) and k = E ′(1, 0, sin θ, cos θ) for the incoming and
outgoing 4−momenta of the massless particle in the lab frame, and similar with E
and E ′ replaced by E∗ and θ replaced by θ+ in the cms frame (note that incoming
and outgoing energy are the same in that frame, but generally not in the lab frame).
Show that

E∗ =
s−m2

f

2
√
s

, (3)

and use this to show that the Lorentz boost between the frames is characterized by
a boost velocity

β =
E

E +mf

. (4)
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3. Applying the same Lorentz boost on the 4−momentum of the outgoing (scattered)
particle, show that

cos θ∗ =
cos θ − β

1− β cos θ
, (5)

with β given by eq.(4).

4. Using eq.(5), show that (i) cos θ → cos θ∗ for β → 0; (ii) cos θ∗ → 1 when cos θ → 1,
independent of β; and (iii)

d cos θ∗

d cos θ

∣

∣

∣

∣

cos θ→1

= 1 + 2E/mf . (6)

5. Finally, use eqs.(1), (2) and (6), together with the expression for s, to show that the
forward scattering amplitude is given by

|f(θ = 0)| =
√

|F (θ = 0)|2
8πmf

. (7)

Note that this is the same expression as for s = m2
f , which however is true only

for E ≪ mf which need not be true in applications of interest (e.g. scattering of
neutrinos or photons on electrons).

2 Neutrino Refractive Index

In order to compute the refractive index of neutrinos, we have to compute the forward
scattering diagrams for neutrinos scattering on electrons, neutrons and protons, collectively
denoted by f .

1. Show that the relevant effective Lagrangian can be written as

Leff = −GF√
2
ψ̄fγµ

(

cfV − cfAγ5

)

ψf ψ̄νlγ
µ(1− γ5)ψνl . (8)

Here νl denotes neutrinos of lepton flavor l. Here

cfV = If3 − 2Qf sin
2 θW , (9)

with If3 and Qf being the third component of weak isospin and electric charge,
respectively, except for νe interactions on electrons, where

ceV |νe = 1/2 + 2 sin2 θW . (10)

Hint: For this last case you’ll need a Fierz rearrangement.
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2. The term ∝ cfA does not contribute to forward scattering on an unpolarized, nonrel-
ativistic medium (since it contributes proportional to the spin of the target in the
non–relativistic limit). Show that in this case the spin–averaged squared Feynman
amplitude is given by

|F |2 = 32
(

cfVGFEνmf

)2

. (11)

Hint: Note that spin averaging only gives a factor 1/2 here. (Why?)

3. Using results from the first question above, this allows to compute the modification
of the refractive index, δnr = nrefr − 1. Show that each target fermion f contributes

δnf
r = ±

√
2nfc

f
VGF/Eν , (12)

where the sign yet remains to be fixed.

4. In order to fix the sign, rewrite the dispersion relation

E2
ν = m2

ν +
~k20 = m2

ν +
~k2(1 + δnr)

2 (13)

into the form
(Enu− V )2 = ~k2 +m2

ν , (14)

which allows to interpret V = δnr as a “potential energy”, and argue that V should
be positive if cfV has the same sign as the vector coupling of the neutrino (which
is positive). What does this mean for anti–neutrinos? Note: The change of the
refractive index, or more exactly the differences between the refractive indices of νe
compared to νµ and ντ , give rise to the famous “MSW” effect, changing the patterns
of neutrino oscillations in matter.
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