
Theoretical Astro–Particle Physics (SS 25)
Homework no. 3 (April 24, 2025)

1 “Reheating” by Particle Decay

Consider a massive, unstable particle X with mass mX and lifetime τX , such that the
energy density of the Universe can be written as a sum ρtot = ρR + ρX , where ρR is
the radiation energy density due to (effectively stable) ultrarelativistic particles of the
Standard Model. In this exercise we want to see how the decay of X changes the radiation.
To this end, we employ the “instantaneous decay approximation”, where all X−particles
decay at temperature T = Td ≪ mX , i.e. the X−particles are non–relativistic when they
decay. Moreover, we assume that the decay products of X thermalize instantaneously, i.e.
contribute to ρR.

1. Argue that this decay should leave ρtot unchanged. This means that it increases the
entropy. Why is this possible?

2. Calculate the increase of the temperature of the thermal bath, i.e. calculate the ratio
Ta/Td where Ta is the temperature just after X−decay.

3. Use the result of the previous step to compute the increase of the entropy density,
sa/sd.

4. Now assume that X “decoupled” at temperature TX ≫ Td, with nX(TX) = cXT
3
X

(where the constant cX is roughly of order unity) and nX(T )/s(T ) = const. for
Td < T < TX . Show that

sa/sd ∝ mXcX
√
τX ,

independent of TX , if ρX ≫ ρR for most of the time between the decoupling and
decay of X.

5. How does sa/sd scale with mX for fixed couplings of X, if X undergoes (i) 2–body
decay, (ii) 3–body decay via the exchange of a boson Y with mY ≫ mX? Hint: use
the relation between mX and τX !

Note: The entropy increase factor estimated in this simple manner accurately repro-
duces the exact result at times t ≫ τX . However, in reality a particle decaying in the ex-
panding universe does not increase the temperature of the thermal bath (unless ρX ≫ ρR
already at temperature TX , which is impossible for particles that once were in thermal
equilibrium); it merely slows down the rate of decrease. Hence “reheating” in the title is
put in quotation marks.
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2 Superparticles in the Early Universe

The notion of supersymmetry postulates that every SM particle has a superpartner with
spin differing by half a unit, but equal gauge quantum numbers; that is, for each SM
fermion of given chirality there should exist a complex “sfermion”, and for each SM gauge
boson a spin−1/2 Majorana “gaugino”. In addition, a second complex Higgs doublet,
plus fermionic (spin−1/2) superpartners, needs to be introduced. Altogether there should
thus be an equal number of fermionic and bosonic degrees of freedom in a supersymmetric
world; more generally, a supersymmetric theory should be invariant when an SM particle
is replaced by its superpartner.

1. Show by explicit calculation that at temperatures well above the mass of all particles
(SM particles and superpartners), this increases the number of degrees of freedom
from 106.75 to 228.75. Why does this number increase by more than a factor of 2?

2. How does this change the relation between time and temperature, for T ≫ mSUSY,
where mSUSY is the superpartner mass scale?

3. Argue that the thermal bath breaks supersymmetry.
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