
Theoretical Astro–Particle Physics (SS 25)
Homework no. 4 (May 7, 2025)

1 Nucleons and Helium in Equilibrium

We saw in class that the abundances of isotopes with A = 2 and A = 3 always remain
small in equilibrium, basically due to their small binding energies. In this exercise we
want to use this fact to describe the transition from a “nucleon–dominated” Universe to a
“4He–dominated” Universe using analytical approximations.

The relevant set of equations (3.25), derived in class, can then be written as

Xn = Xpe
−Q/T ;

X4He = X4
pf(T ) , (1)

where f(T ) is a (known) function of temperature T . In addition, we have the constraint

Xp +Xn +X4He = 1 . (2)

1. For T ≥ 0.35 MeV, the 4He abundance is very small, X4He ≪ 1. Solve the above
system of equations (1) and (2) exactly for Xp and Xn in this limit.

2. The solution for Xp found in this first approximation increases with decreasing T ,
eventually reaching Xp = 1 as T ≪ Q. However, at some point X4He will become
significant. Use the fact that X4He is still small at temperatures near the one where
Xp reaches its maximum to derive an improved approximation for Xp(T ). Hint: Use
the solution of the first step in the factor X4

p appearing in the expression for X4He.
Why is this a reasonable approximation?

3. This second, improved result for Xp(T ) has a maximum at some value of T . Estimate
this value of T , and the corresponding value of Xp. Hint: Use the result derived in
class

f(T ) ≃ 112η3
(
T

mN

)4.5

e(BA−2Q)/T ≃ 2.5 · 10−25

(
T

mN

)4.5

e(BA−2Q)/T ,

and focus on the largest terms when setting dXp(T )/dT = 0 (BA = 28.3 MeV,
Q = 1.3 MeV).

4. We saw in class that X4He quickly grows for lower temperatures, becoming about 1
for T < 0.25 MeV. This is in conflict with observation. Hence some reactions must
have decoupled at T > 0.25 MeV, i.e. the assumption of thermal equilibrium is
not correct. In fact, we already saw in class that weak interactions, which maintain
equilibrium between Xn and Xp, are not in equilibrium for T < 1 MeV. Instead,
the ratio of neutron and proton number densities “froze in” at T ≃ 1 MeV, and is
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modified thereafter only by the decay of the neutrons. Show that using this modified
ansatz for Xn makes things worse, i.e. X4He is even larger when computed using this
corrected value of Xn. Hint: Compare the time required for the Universe to cool
from T = 1 MeV to T ≃ 0.3 MeV with the lifetime of the free neutron, τn = 886 s.

2 Decaying massive particles during BBN

The success of BBN in the standard picture constrains particle physics models containing
a massive particle ψ which decays during BBN, i.e. with lifetime ≥ 1 s. Here we want to
explore some aspects of such decays. In the following we assume that ψ producing reactions
are decoupled, i.e. the ψ number density is comoving constant except for the effect of ψ
decay.

1. Let τψ be the lifetime of the decaying particle ψ. Compute the scaled abundance at
t ≫ 1 s in terms of Ỹψ ≡ Yψ(t = 1 s) and (i) the time t or (ii) the temperature T .
Hint: To express the abundance in terms of T , make use of the relation between time
and Hubble parameter, and that between Hubble parameter and temperature, in the
radiation dominated epoch. Also, you have to transform from energy to time units.

2. Let’s assume that ψ decays into (many) pions, with typical Lorentz γ factor of 50. We
saw in class that such pions can change BBN predictions by changing the neutron to
proton ratio, but only if they interact before they decay. Argue that only interactions
with baryons (protons and neutrons) are relevant here. Calculate the interaction
length λI = 1/(σnb), where σ ≃ 30 mb is the relevant interaction cross section, and
nb is the number density of baryons, and compare this to the decay length λD = cγτπ.
At what temperature are these two lengths equal? Hint: Express nb in terms of η
introduced in class, and the photon number density nγ. Charged pions have a lifetime
of 2.6 · 10−8 s.
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