Advanced Theoretical Astro-Particle Physics (WS 22/23) Homework no. 5 November 9, 2022)

To be completed by: Thursday, November 17.

1 Inverse Compton Scattering with General Kinematics

In class we discussed "inverse" Compton scattering only in the head-on configuration, where the incident electron travels in z direction and the incident photon travels in $-z$ direction. Of course, this will in general not be true for an ultrarelativistic electron in an "astrophysical accelerator" traveling through ambient photons. We can still write

$$
\begin{equation*}
p_{e}=E_{e}(1,0,0,1) \tag{1}
\end{equation*}
$$

for (ultra-relativistic) incident electrons; this just determines our choice of z-axis. However, for the incident photon we should use the more general ansatz

$$
\begin{equation*}
p_{\gamma}=E_{\gamma}(1,0, \sin \alpha, \cos \alpha) . \tag{2}
\end{equation*}
$$

1. Compute the squared center-or-mass (cms) energy $s=\left(p_{e}+p_{\gamma}\right)^{2}$.
2. The next step is to find a transformation that takes us from the "laboratory" frame, defined by eqs.(1) and (2), to the cms frame, where

$$
\begin{equation*}
p_{e}^{*}=\left(E_{e}^{*}, \vec{p}^{*}\right) ; \quad p_{\gamma}^{*}=\left(E_{\gamma}^{*},-\vec{p}^{*}\right) . \tag{3}
\end{equation*}
$$

Give explicit expressions for E_{e}^{*} and $E_{\gamma}^{*}=\left|\vec{p}^{*}\right|$.
3. As a first step, we wish to find a transformation to a system where the electron and photon collide head-on; the transformation from that system to the cms is then as discussed in class. Let p_{e}^{\prime} and p_{γ}^{\prime} be the 4 -vectors of the incoming electron and photon in that system. Show that a rotation cannot go from the lab frame to this "primed" reference frame.
4. Instead a boost is needed. Clearly this will have to be a boost along some axis in the (y, z) plane. Define

$$
\begin{equation*}
\vec{\epsilon}=\left(0, \sin \alpha^{\prime}, \cos \alpha^{\prime}\right) ; \quad \vec{\epsilon}_{T}=\left(0, \cos \alpha^{\prime},-\sin \alpha^{\prime}\right), \tag{4}
\end{equation*}
$$

and write the original incoming momenta \vec{p}_{e} and \vec{p}_{γ} as

$$
\begin{equation*}
\vec{p}_{e}=p_{e, L} \vec{\epsilon}+p_{e, T} \vec{\epsilon}_{T} ; \quad \vec{p}_{\gamma}=p_{\gamma, L} \vec{\epsilon}+p_{\text {gamma }, T} \vec{\epsilon}_{T} . \tag{5}
\end{equation*}
$$

Use this decomposition to perform a boost in direction $\vec{\epsilon}$ with boost parameter β^{\prime}, i.e. compute p_{e}^{\prime} and p_{γ}^{\prime} for general angle α^{\prime} and general β^{\prime}.
5. Not surprisingly, the desired boost should have $\alpha^{\prime}=\alpha / 2$, i.e. the boost axis lies midway between \vec{p}_{e} and \vec{p}_{γ}. By considering $\left|\vec{p}_{e}^{\prime}\right|,\left|\vec{p}_{\gamma}^{\prime}\right|$ and the scalar product $\vec{p}_{e}^{\prime} \cdot \vec{p}_{\gamma}^{\prime}$, show that \vec{p}_{e}^{\prime} and $\vec{p}_{\gamma}^{\prime}$ can be anti-parallel only if their components along $\vec{\epsilon}$ vanish; this requires boost parameter $\beta^{\prime}=-\cos (\alpha / 2)$. What is the corresponding γ^{\prime} ?
6. The boost from the "primed" system to the cms now proceeds basically as in class, except that this second boost evidently has to be along $\vec{\epsilon}_{T}$ direction. In particular, the energy of the outgoing photon in the primed system is

$$
\begin{equation*}
E_{\gamma, \text { out }}^{\prime}=\gamma E_{\gamma}^{*}\left(1-\beta \cos \theta^{*}\right), \tag{6}
\end{equation*}
$$

where θ^{*} is the cms scattering angle, and for $E_{e} \gg m_{e}$ the boost parameters are $\beta \simeq 1-s /\left(2 E_{e}^{\prime 2}\right)$ and $\gamma \simeq E_{e}^{\prime} / \sqrt{s}$, see eqs.(I.94a,b) in class. Now boost back to the original lab frame, and show that the energy of the outgoing photon is still maximal for $\cos \theta^{*}=-1$, and can still be written as

$$
\begin{equation*}
E_{\gamma, \mathrm{out}}^{\max }=E_{e} \frac{s-m_{e}^{2}}{s} \tag{7}
\end{equation*}
$$

see eq.(I.96) in class. Does this mean that the result is independent of the angle α ?
Note: The transformation to the cms frame, while a bit complicated in this example, is still useful since in this frame one can always assume that the scattering angle can take all values between 0 and π, i.e. $\cos \theta^{*}$ can take all values between -1 and 1 ; moreover, the energies of the incoming and outgoing particles are the same in this frame.

