
Theoretical Astro–Particle Physics (SS 25)
Homework no. 5 (May 15, 2025)

1 Helium abundance and “dark radiation”

As mentioned in class, the 4He abundance after BBN depends on the Hubble parameter,
and hence on the number of light degrees of freedom, often parameterized as δNν , i.e. the
number of additional light degrees of freedom counted in units of additional neutrinos (i.e.
δNν = 1 means one additional SM–like neutrino with mass < 0.1 MeV).

1. Compute δg∗/g∗,SM for: (i) one extra neutrino, δNν = 1; (ii) one real spin–0 boson
(e.g., an axion), assuming it has the same temperature as the photon bath.

2. The temperature Tp↔n where p ↔ n reactions decouple is the temperature where the

rate of these reactions is equal to the Hubble rate. Show that Tp↔n ∝ g
1/6
∗ . Hint:

argue that the rate for p ↔ n reactions, which are due to charged current weak
reactions, is proportional to T 5, since the corresponding squared Feynman amplitude
contains two factors of nucleon momenta (of order mN) and two factors of lepton
(electron, positron or (anti-)neutrino) momenta (of order T ).

3. The change of Tp↔n changes the neutron to proton ratio at decoupling,

rn/p ≡ Xn/XP |T=Tp↔n
. Show that for δNν

<∼ 1, where a Taylor expansion can be
used, the change can be estimated as

rn/p ≃ rn/p,SM

(
1− 7

258
ln(rn/p,SM)δNν

)
. (1)

4. Use eq.(1) and rn/p,SM = 1/6 to show that adding δNν = 1 additional light degrees
of freedom increased the neutron to proton ratio by about 4.8%. If the time between
n/p decoupling and 4He formation is kept fixed, this changes the 4He abundance by
about 4.2%. Compare this to the accuracy of the determination of the primordial
4He abundance reported in class.

Note: This is an order–of–magnitude estimate. The actual T dependence of p ↔ n
changing reactions at T ∼ 1 MeV is more complicated, since the finite electron mass and
n− p mass splitting have to be taken into account.

2 Thermal production of stable relics

In this exercise we want to compute the relic density of a purely thermally produced
Majorana particle χ (i.e. χ is its own antiparticle, which implies that it cannot have a
chemical potential), assuming its production cross section is so small that it never reached
thermal equilibrium.
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1. In class it was shown that the Boltzmann equation for the scaled χ number density
can be written as

dYχ

dx
= −3.02xMPl√

g∗m2
χ

s⟨σv⟩
[
Y 2
χ −

(
Y eq
χ

)2]
. (2)

Here s is the entropy density, x = mχ/T, Yχ = nχ/s, and g∗ is the effective number
of relativistic degrees of freedom. Assuming g∗ = g∗,s rewrite Eq.(2) using explicit
expressions for s and for the equilibrium density Y eq

χ . Hint: Assume T ≪ mχ, i.e.
non–relativistic χ particles.

2. Now assume that at some initial temperature Ti ≪ mχ we have nχ(Ti) = 0. At least
initially, the first (annihilation) term on the right–hand side of Eq.(2) can then be
neglected. Assume further that ⟨σv⟩ = a is a constant. Show that the Boltzmann
eq. can then be written as

dYχ

dx
= κxe−2x , (3)

where κ is a (positive) constant.

3. Solve Eq.(3) explicitly.

4. In order to check the range of validity of this solution, we have to make sure that χ
annihilation remains unimportant, i.e. that χ never attained chemical equilibrium.
Argue that comparing the solution Yχ with the equilibrium density Y eq

χ does not
allow to perform this check. What would be a better comparison?
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