
Theoretical Astro–Particle Physics (SS 22)
Homework no. 6 (May 12, 2022)

1 Proton Antiproton Annihilation in the Early Uni-

verse

The formalism for the decoupling of massive particles can also be used to describe the
decoupling of protons and antiprotons.

1. Let us first assume that there is no asymmetry, i.e. np = np̄. Estimate the current
scaled total (anti)baryon density, η̃ ≡ (np + np̄)/nγ, and compare with the value
of ηγ derived from our earlier analysis of BBN. Hint: Assume a constant (energy-
independent) annihilation cross section, ⟨σ(pp̄ → pions)v⟩ = 30 mb.

2. Now allow for an initial asymmetry between protons and antiprotons. This is assumed
to have been produced by non–SM interactions at some high temperature; these
interactions are irrelevant (decoupled) at the much lower temperatures relevant for
the calculation of this exercise. Write down separate Boltzmann equations for Yp and
Yp̄, by modifying eq.(4.30) given in class appropriately. Show that d(Yp−Yp̄)/dx = 0,
reflecting the conservation of baryon number in the Standard Model. Use this to
express Yp in terms of Yp̄. Hint: Let η ≡ Yp − Yp̄.

3. Finally, estimate the resulting Yp̄(x → ∞), i.e. today’s scaled antibaryon density,
by taking a fixed xF = 10, g∗ = 10. How does the remaining antiproton density
vary when η is increased? Hint: Recall that for x > xF , the production term in
the Boltzmann equation can be neglected. Solve the Boltzmann equation explicitly
for constant ⟨σv⟩ and assuming Yp̄(xF ) ≫ η; the final result is then independent of
Yp̄(xF ).

2 Co–Annihilation

In class we treated the decoupling of a single species χ from the thermal bath of SM
particles. Now let us introduce a second, heavier species χ′ that shares some quantum
number with χ. This means that reactions of the form χ + i ↔ χ′ + j are allowed,
where i, j are SM particles, in addition to the (co–)annihilation (or creation) reactions
χ(′)χ(′) ↔ i + j, while reactions like χχ ↔ χ′ + i are forbidden. In addition, (inverse)
decays χ′ ↔ χ+ i+ j are allowed.

1. Argue that the Boltzmann equation for the χ number density nχ can be written as
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Here the (co–)annihilation cross sections, the i+χ → j+χ′ cross sections and the χ′

decay width Γχ′ are understood to be summed over all SM final states. (Note that it
has been assumed that χ, χ′ are Majorana particles. In this case there’s no factor 1/2
in front of the co–annihilation term, even though it destroys only a single χ particle,
since the annihilation term gets a factor 1/2 when integrating over the initial phase
space of identical particles.)

2. Write down the analogous Boltzmann equation for nχ′ .

3. Solving these two coupled equations is very difficult. Fortunately there’s no need for
this, as long as we’re only interested in the final (i.e. long after decoupling) total
density of χ particles. Argue that we only need to consider the sum n := nχ + nχ′

for this, and that its Boltzmann equation is given by
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4. We saw in class that the final density of χ particles is determined by reactions that
occur at temperature T ≤ TF , where TF is the freeze–out temperature, where TF ∼
mχ/20 is much less than the mass mχ even for particles with weak (in the sense of
the SM) interactions, and even smaller for strongly interacting particles. Argue that
for mass difference ∆ := mχ′ −mχ < mχ, the rate for χ ↔ χ′ converting reactions
is exponentially larger than that of (co–)annihilating reactions. Therefore relative
chemical equilibrium between the χ and χ′ number densities should be maintained
until well after the freeze–out of χ. Show that this implies
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5. Using eqs.(2) and (3), derive the final Boltzmann equation
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6. Finally, argue that in some cases the co–annihilation terms in eq.(4) can dominate
even if ∆ > TF . Hint: Searches for exotic isotopes on Earth imply that a stable χ
must be electrically neutral and must be an SU(3) singlet.
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