Theoretical Astro–Particle Physics (SS 25) Homework no. 11 (July 2, 2025)

1 Energy–Momentum Tensor

The energy-momentum tensor $T_{\mu\nu}$ can be derived as the four Noether currents that correspond to the invariance of the action under spacetime translations,

$$x_{\mu} \to x_{\mu} + a_{\mu} \,. \tag{1}$$

Here we want to calculate $T_{\mu\nu}$ for a scalar field theory.

- 1. Write down the transformation of the scalar field ϕ under the transformation (1). *Hint:* Assume an infinitesimal a_{μ} .
- 2. How does the Lagrangian $\mathcal{L}(\phi)$, given in the 2nd problem of the previous sheet, transform?
- 3. Use the Noether procedure to show that invariance of the action under (1) implies $\partial_{\mu}T^{\mu}_{\nu} = 0$ for

$$T^{\mu}_{
u} = rac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{
u} \phi - \mathcal{L} g^{\mu}_{
u}$$

Hint: You can assume that the only spacetime derivatives in \mathcal{L} appear in the kinetic energy term, as in the scalar Lagrangian.

4. Compute T^{μ}_{ν} explicitly for the scalar action.

2 Inflection Point Inflation

In class we had seen an example of "large-field" inflation: a simple quadratic potential for the inflaton can lead to inflation only for field values much larger than the Planck scale. In this exercise we will analyze an example for "small-field" inflation, where inflation can occur for field values much smaller than the Planck scale.

In our example inflation occurs near an inflection point ϕ_0 of the potential $V(\phi)$, which is defined via

$$V'(\phi_0) = V''(\phi_0) = 0.$$
(2)

1. Show that near the inflection point, the potential can be written as

$$V(\phi \sim \phi_0) \simeq V_0 + \frac{\kappa}{3} (\phi - \phi_0)^3$$
, (3)

where V_0 and κ are constants.

- 2. Compute the slow-roll parameters ϵ and η introduced in class, and show that slow-roll inflation with $\phi_0 < M_{\rm Pl}$ can occur only if V_0 is non-zero (and positive).
- 3. Show that $|\eta| \gg \epsilon$ if $\kappa > V_0/M_{\rm Pl}^3$. This means that the beginning and/or end of inflation is given by $|\eta| = 1$.
- 4. Show that for initial field value $\phi_i > \phi_0$ the number of e-folds \mathcal{N} diverges in slow-roll approximation.
- 5. One can thus either assume that initially ϕ was smaller than, but near to, ϕ_0 , or else slightly perturb the potential (3). What kind of perturbation would lead to a finite \mathcal{N} even if $\phi_i > \phi_0$?
- 6. Finally, show that the inflationary scale can be very low in this scenario, e.g. H < 1 GeV is compatible with having $\gtrsim 60$ e–folds of inflation.