
Theoretical Particle Physics 1 (WS 23/24)
Homework No. 10 (December 18, 2023)
To be handed in by Sunday, January 7!

Quickies

About 20 to 25% of the points in the final exam will be awarded for “quickies”, questi-
ons that you should be able to answer in a single sentence (or at most a short paragraph),
or by drawing some diagram(s). From now on the homework sheets will contain examples
of such questions. You might want to try answering these questions without looking at
your notes (or a text book).

Q1: By looking at the relevant Feynman diagram(s), show that for w 6= 1, Pg←q(w) =
Pq←q(1 − w); here w is the relative momentum fraction carried by the parton (quark or
gluon) into which the original parton (here a quark) splits. Why does this not work at
w → 1?

Q2: In eq.(2.64) in class the concept of “fragmentation functions” Dh
i (z,Q2) was in-

troduced, where i stands for a parton and h for a hadron; z = Eh/Ei is the scaled energy
variable, and Q describes the “hardness” (typical virtuality scale) of the process. Roughly,
the fragmentation functions describe the relative flux of hadron h produced in the hadro-
nization of a parton i. (i) How are Dπ+

u , Dπ+

d̄
and Dπ−

d related, when the mass difference
between u and d quarks, as well as (small) contributions from electromagnetic interactions,
are ignored? (In this limit “strong isospin” I is conserved, where u and d form an SU(2)I
doublet.) (ii) Which constraints on sums of fragmentation functions follow from energy
conservation?

Q3: List all the partonic QCD 2 → 2 scattering processes that have distinct matrix
elements even in the limit of vanishing quark masses. Hint: There are eight of them!

1. Gauge Invariance in Gluon–Gluon Scattering

Consider the process g(k1)g(k2) → g(p1)g(p2). Let ε1(k1) and ε2(k2) be the pola-
rization vectors of the gluons in the initial state, and ε′1(p1) and ε′2(p2) those of the
gluons in the final state. The purpose of this exercise is to show that gauge invariance
demands that the same coupling gs appears in the three– and four–gluon vertices.

(a) Draw the Feynman diagrams that contribute. Hint: There are four of them.

(b) Write down the corresponding scattering amplitude (matrix element), using the
Feynman rules (2.24) and (2.25) given in class for the three- and four gluon
vertices, respectively.
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(c) Gauge invariance requires that physical amplitudes vanish if the polarization
vector of one of the external gluons is replaced by its 4−momentum. Show by
explicit calculation that this is true when ε1 → k1 for the standard Feynman
rules of QCD. Hint: Work in Feynman gauge, and use the fact that the other
three gluons are transverse, ε2 ·k2 = ε′1 ·p1 = ε′2 ·p2 = 0, see eq. (1.31). Using these
relations, and the fact that the time components of the polarization vectors are
zero, derive and use the relations ε2 · k1 = ε′1 · p2 = ε′2 · p1 = 0. Finally, you
have to use the Jacobi identity fabefcde − facefbde + fadefbce = 0, see the second
problem of HW 7.

2. Non–Singlet Quark Distribution Functions
A (flavor!) non–singlet quark distribution function is the difference between any two
quark or antiquark distribution functions,

qNS(x, k2) = qi(x, k
2)− qj(x, k2) . (1)

(The subscripts i, j have been suppressed on the left–hand side; it should be clear
that many such differences can be defined.)

(a) Show that qNS obeys a homogeneous evolution equation,

dqNS(x, k2)

d ln k2
=
αS(k2)

2π

∫ 1

x

dw

w
Pq←q(w)qNS

( x
w
, k2
)
, (2)

where Pq←q is the quark to quark splitting function introduced in eq.(2.55) in
class.

(b) In order to solve eq.(2) perform a “Mellin transform”, defined via

f(n) :=

∫ 1

0

xn−1 f(x)dx . (3)

Note that the function f may have additional arguments; in particular, it may
depend on the squared momentum exchange k2. Show that the Mellin transform
turns the convolution of eq.(2) into a simple product,

dqNS(n, k2)

d ln k2
=
αS(k2)

2π
Pq←q(n)qNS(n, k2) . (4)

(c) Eq.(4) can now be solved by separation of variables. Using the explicit expression
(2.34) for the running coupling αS(k2) (to 1–loop order), show that the solution
can be written as

qNS(n, k2) = qNS(n, k2
0) ·
(
αS(k2)

αS(k2
0)

)− 6Pq←q(n)

33−2Nf

, (5)

where Nf is the number of “active” quark flavor (with mass m2
q < |k2|), and k0

is some reference scale – like any first order differential equation, the solution
of eq.(4) requires the specification of one boundary condition.
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(d) Explicitly compute the first two moments (n = 1, 2) of Pq←q and interpret the
result (5) for these cases.

Remark: From N quark and anti–quark distribution functions one can define N − 1
independent non–singlet distributions, plus one singlet distribution, qS =

∑N
i=1 qi;

the evolution of this singlet distribution is coupled to that of the gluon density.
This system of (only) 2 coupled equations is still much easier to solve than that of
N + 1 coupled equations describing the original (anti–)quark densities plus the gluon
density.
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