Theoretical Particle Physics 1 (WS 23/24)
 Homework No. 11 (January 8, 2024)
 To be handed in by Sunday, January 14!

Quickies

Q1: What limit does unitarity of the S-matrix impose on the behavior of total exclusive cross sections (e.g. $e^{+} e^{-} \rightarrow b \bar{b}, e^{+} e^{-} \rightarrow W^{+} W^{-}$) at large Mandelstam-s?

Q2: What limit does unitarity of the S-matrix impose on the behavior of total inclusive cross sections (e.g. $p p \rightarrow b \bar{b}+X, p p \rightarrow t \bar{t}+X$) at large hadronic Mandelstam $-s$? Hint: Recall that a large hadronic Mandelstam $-s$ does not imply a large partonic Mandelstam $-s$!

Q3: Write down the propagator of one of the massive vector bosons in the IVB theory. (This is also the propagator of W bosons in the full Standard Model of particle physics, if the "unitary gauge" is chosen.)

Q4: Argue that the matrix element for the production of longitudinally polarized W bosons in $e^{+} e^{-}$annihilation via ν_{e} exchange in the $t-$ channel, $e^{+} e^{-} \rightarrow W_{L}^{+} W_{L}^{-}$, scales like s / m_{W}^{2} at fixed scattering angle and $s \gg m_{W}^{2}$. To that end, show that the longitudinal polarization vector $\epsilon_{0}\left(k_{w}\right) \simeq k_{W} / m_{W}$ if energy $E_{W} \gg m_{W}$; here k_{W} is the 4-momentum of the W boson in question.

1. Muon decay

We consider the decay of muon $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$ at the leading order of the $V-A$ interaction. Let p be the muon four momentum and let $k_{i}(i=1,2,3)$ be the fourmomenta of the final muon-neutrino, electron-antineutrino, and electron. Neutrinos can be treated as massless, and m_{e}^{2} can be neglected ($m_{\mu} \simeq 206 m_{e}$).
(a) Draw the leading Feynman diagram and write down the corresponding amplitude.
(b) Compute the spin-averaged amplitude-squared, summed over spins of final particles as well. Hint: Recall the definition of $\bar{\Gamma}=\gamma_{0} \Gamma^{\dagger} \gamma_{0}$ for the "Dirac conjugate" of some combination Γ of Dirac matrices. What is $\overline{\gamma_{\mu} \gamma_{5}}$? To evaluate the traces, you need the identities

$$
\begin{align*}
\operatorname{tr} \gamma_{5} \gamma_{\alpha} \gamma_{\beta} \gamma_{\mu} \gamma_{\nu} & =4 i \epsilon_{\alpha \beta \mu \nu} \\
\epsilon_{\mu \lambda \alpha \beta} \epsilon^{\mu \rho \alpha \sigma} & =-2\left(\delta_{\lambda}^{\rho} \delta_{\beta}^{\sigma}-\delta_{\beta}^{\rho} \delta_{\lambda}^{\sigma}\right), \tag{1}
\end{align*}
$$

where $\epsilon_{\alpha \beta \mu \nu}$ is the (Lorentz invariant!) totally antisymmetric tensor in 4 dimensions, with $\epsilon_{0123}=-\epsilon^{0123}=1$.
(c) Define

$$
\begin{equation*}
x_{i}=\frac{2\left(k_{i} \cdot p\right)}{m_{\mu}^{2}} . \tag{2}
\end{equation*}
$$

(This is the ratio of the CM energy of particle i to the maximum available energy.) Show that

$$
\begin{equation*}
\sum_{i=1}^{3} x_{i}=2 \tag{3}
\end{equation*}
$$

and that the integral over the final state three-body phase space can be written as

$$
\begin{align*}
\int d \Pi_{3} & =\left[\int \prod_{i=1}^{3} \frac{d^{3} k_{i}}{(2 \pi)^{3}} \frac{1}{2 E_{i}}\right](2 \pi)^{4} \delta^{(4)}\left(p-\sum_{i} k_{i}\right) \\
& =\frac{m_{\mu}^{2}}{128 \pi^{3}} \int d x_{1} d x_{2} . \tag{4}
\end{align*}
$$

What is the region of integration for x_{1} and x_{2} ? Hint: It is easier to work in the rest frame of the decaying muon. All Lorentz invariants involving only the final state momenta can be computed in terms of the x_{i} and the particle masses. To see that, dot the equation for 4 -momentum conservation with the k_{i} in order to derive relations between the required product(s) $k_{i} \cdot k_{j}$ and x_{1}, x_{2}.
(d) Obtain the decay rate. What is the muon lifetime in seconds? Hint: Use $G_{F}=$ $1.15 \cdot 10^{-5} \mathrm{GeV}^{-2}$ for the Fermi constant.

Reminder: If you wish to participate in the final exam, please register with Basis until January 15!

