Theoretical Particle Physics 1 (WS 23/24)
 Homework No. 2 (Oct. 16, 2023)
 To be handed in by Sunday, October 22!

1. Current conservation in QED

The QED Lagrangian reads [see eq. (1.16) in class]:

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{k} \bar{\psi}_{k}\left(i \not \partial-m_{k}-q_{k} A\right) \psi_{k} . \tag{1}
\end{equation*}
$$

It is invariant under transformations of the type [see eq. (1.12) in class]

$$
\psi_{k} \rightarrow e^{i \alpha q_{k}} \psi_{k}
$$

where α is a real constant. The corresponding Noether current is [see eq. (1.13) in class]

$$
\begin{equation*}
-J_{N}^{\mu} \equiv J_{Q}^{\mu}=\sum_{k} q_{k} \bar{\psi}_{k} \gamma^{\mu} \psi_{k} \tag{2}
\end{equation*}
$$

(a) Write down the equations of motion for fermion fields ψ_{k} and their conjugates $\bar{\psi}_{k}$ using the Lagrangian (1).
(b) Using these equations of motion, show that the current J_{Q}^{μ} of eq. (2) is conserved, $\partial_{\mu} J_{Q}^{\mu}=0$.
(c) Is the sum over k in eq. (2) necessary for the current to be conserved? What does this mean?

2. Lorentz Transformation of Spinors

In class it was shown that the generators of Lorentz transformations of spinors are given by

$$
\begin{equation*}
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] . \tag{3}
\end{equation*}
$$

(a) Show by explicit calculation that the $S^{\mu \nu}$ satisfy the Lorentz algebra, i.e.

$$
\begin{equation*}
\left[S^{\mu \nu}, S^{\alpha \beta}\right]=i\left(S^{\nu \alpha} g^{\mu \beta}+S^{\mu \beta} g^{\nu \alpha}-S^{\mu \alpha} g^{\nu \beta}-S^{\nu \beta} g^{\mu \alpha}\right) . \tag{4}
\end{equation*}
$$

Hint: Use the Dirac algebra, i.e. the anticommutator relation $\left\{\gamma^{\rho}, \gamma^{\sigma}\right\}=2 g^{\rho \sigma}$. To that end, write out the l.h.s. of eq.(4) explicitly using the definition given in eq.(3), and begin by anticommuting the two middle γ matrices in each of the 8 terms.
(b) Write down the explicit expressions for the $S^{0 k}$ and $S^{l k}$ in the Dirac representation, the equivalent of eq.(L.14) in class for the chiral representation, and show that it also satisfies

$$
\begin{equation*}
\left(S^{\mu \nu}\right)^{\dagger} \gamma^{0}=\gamma^{0} S^{\mu \nu} \tag{5}
\end{equation*}
$$

Hence eq.(L.19) shown in class also holds in this representation.
(c) The generators S with two spatial indices, $S^{k l}$, generate rotations. In order to see this, recall from (L.17b) that

$$
\begin{equation*}
\Lambda_{\frac{1}{2}}\left(\omega_{\mu \nu}\right)=\exp \left[-\frac{i}{2} \omega_{\mu \nu} S^{\mu \nu}\right] \tag{6}
\end{equation*}
$$

where the six components of $\omega_{\mu \nu}$ contain three rotation angles and three boost parameters. Specifically, consider

$$
\begin{equation*}
\omega_{12}=-\omega_{21}=\theta_{3} \neq 0 \tag{7}
\end{equation*}
$$

with all other $\omega_{\mu \nu}=0$, and show that this describes a rotation around the z axis of the two 2 -spinors forming a Dirac spinor in the Dirac representation.
(d) Finally, consider a Lorentz transformation with $\omega_{01}=-\omega_{10}=2 \eta_{1}$, with all other $\omega_{\mu \nu}=0$. Define

$$
\Sigma_{1}=\left(\begin{array}{cc}
0 & \sigma_{1} \tag{8}\\
\sigma_{1} & 0
\end{array}\right)
$$

and show that $\Sigma_{1}^{2}=1$. Use this to show that

$$
\Lambda_{\frac{1}{2}}\left(\eta_{1}\right)=\cosh \left(\eta_{1}\right)+\Sigma_{1} \sinh \left(\eta_{1}\right)
$$

Finally, show that $\Lambda_{\frac{1}{2}} u(\vec{p}=0)$ gives the u-spinor for a fermion moving in x-direction, with $\cosh \left(\eta_{1}\right)=\sqrt{(E+m) /(2 m)}$.

