Advanced Theoretical Particle Physics (SS 24)

Homework No. 1 (Apr. 12, 2024)
To be handed in by Thursday, April 18, 4 p.m.

1. Fermion masses in the SM

(a) In class the quark mass terms were written as

$$
\begin{equation*}
\mathcal{L}_{q-\text { mass }}=-\sum_{q=u, d} \overline{q_{j R}}\left(\mathcal{M}_{q}\right)_{j k} q_{k L}+h . c ., \tag{1}
\end{equation*}
$$

for $q=u, d$. Use unitary transformations of the form $q_{L, R}^{\prime}=U_{q}^{L, R} q_{L, R}$ such that these mass terms are diagonalized, where $q_{L, R}^{\prime}, q_{L, R}$ are three-component vectors in generation space and $U_{q}^{L, R}$ are four (in general different) unitary 3×3 matrices. Which combinations of these matrices appear in the interactions of the physical (mass eigenstate) quarks q_{k}^{\prime} with W and Z bosons?
(b) In general, it would seem that one has to write the charged lepton mass term in the SM also as matrix

$$
\begin{equation*}
\mathcal{L}_{l-\text { mass }}=-\overline{l_{j R}^{-}}\left(\mathcal{M}_{l}\right)_{j k} l_{k L}+h . c . \tag{2}
\end{equation*}
$$

where l_{j} stands for one of the three charged leptons. Show that in the SM one can assume without loss of generality that \mathcal{M}_{l}, and hence the matrix of lepton Yukawa couplings, is diagonal. Hint: Diagonalize \mathcal{M}_{l} as in the previous case for quarks; then show that one can always find a basis for the neutrinos such that the matrices diagonalizing \mathcal{M}_{l} drop out of all vertices in the Lagrangian.

2. Dirac and Majorana masses

A general four-component Dirac spinor can be written in the chiral representation as

$$
\begin{equation*}
\psi=\binom{\xi_{L}}{\xi_{R}} \tag{3}
\end{equation*}
$$

where ξ_{L} and ξ_{R} are two in general different two-component spinors.
(a) A Dirac mass term is of the form

$$
\begin{equation*}
\mathcal{L}_{\text {Dirac mass }}=-m \overline{\psi_{R}} \psi_{L}+h . c . ; \tag{4}
\end{equation*}
$$

the quark and charged lepton mass terms discussed in the first problem are of this form. Write this mass term in terms of the two-component spinors ξ_{L} and ξ_{R}.
(b) A Majorana spinor has to satisfy the condition

$$
\begin{equation*}
\psi^{C} \equiv C \bar{\psi}^{T}=\psi, \tag{5}
\end{equation*}
$$

where $C=i \gamma^{2} \gamma^{0}$ is the charge conjugation matrix and the superscript T indicates transposition. What is the physical meaning of this condition, and what does it imply for the two-component spinors $\xi_{L, R}$?
(c) Show that $\left(\psi_{L}\right)^{C}$ is a right-handed field. To that end, show that C is unitary; that $C^{-1} \gamma_{5} C=\gamma_{5}^{T}=\gamma_{5}$ (the second relation holds in the chiral basis); and hence that $P_{R}\left(\psi_{L}\right)^{C}=C\left[\overline{\psi_{L}} P_{R}\right]^{T}$ whereas $P_{L}\left(\psi_{L}\right)^{C}=0$, where $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$ are the chiral projectors. Do not assume that ψ satisfies the Majorana condition (5).
(d) A Majorana mass term is written as

$$
\begin{equation*}
\mathcal{L}_{\text {Majorana mass }}=-\frac{1}{2} M_{L} \overline{\left(\psi_{L}\right)^{C}} \psi_{L}+\text { h.c. } \tag{6}
\end{equation*}
$$

Why do we need the factor $1 / 2$ if M_{L} is to be the physical (pole) mass?
(e) In general one can also write a term anologuous to that in (6), with $L \rightarrow R$ everywhere. In general $M_{L} \neq M_{R}$ is permitted, but are these two quantities related if ψ is a Majorana spinor, i.e. if it satisfies the condition (5)?
(f) Can a Majorana mass term be introduced for any fermion in the SM, if we require gauge invariance and restrict ourselves to terms in the Lagrangian that are power-counting renormalizable? And can one write a Majorana mass term for the SM neutrinos involving the (vev of the) Higgs boson if non-renormalizable terms are allowed?

