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Chapter 1
Relativisti Quantum Mehanis
1.1 Introdutory remarks1.1.1 Speial relativity and Lorentz transformationsEinstein 1905:Postulate that the veloity of light (c ≈ 3 · 108m

s

) is invariant in allinertial referene frames.Mathematial formulation: Minkowski spae-timeWhen we speify an instant of time t and a point (x, y, z) in spae, we are de�ninga point in spae-time. We denote the oordinates of suh a point in spae-timeby (x0, x1, x2, x3), where
x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. (1.1)These oordinates are the omponents of a four-dimensional vetor in spae-time.To shorten the notation we label suh a vetor by Greek indies µ, ν, so that weget
xµ = (x0, ~x) = (x0, x1, x2, x3). (1.2)7



8 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSThe spae-time metri tensor (Minkwoski metri) is given by
gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (1.3)This metri de�nes Minkowski spae. Later on we will see whih onsequenesthe Minowski metri implies. Further more we distinguish between two lasses ofvetors. Vetors like xµ are alled ontravariant and those like xν are known asovariant vetors. Contravariant indies are plaed as supersripts and ovariantindies as subsripts. The Minkowski metri determines how to get a ovariantvetor of a ontravariant one, and vie versa:

xµ =

3∑

ν=0

gµνxν xµ =

3∑

ν=0

gµνx
ν (1.4)Using the Minkowski metri expliitly we obtain that a ovariant vetor xµ (de-rived from a ontravariant vetor xν) has negative spae omponents. To be moreompatly we use the Einstein summation onvention, i.e. Greek indies whihappear twie (one as a ontravariant index in supersript and one as a ovariantindex in subsript) are summed over.

xµ = gµνx
ν (1.5)So Greek indies µ, ν = 0, 1, 2, 3 denote the oordinates of a four-dimensionalvetor in Minkwoski spae, while Roman indies a, b = 1, 2, 3 denote the oordi-nates of a three-dimensional vetor in eulidian position spae. To omplete thestruture of Minkowksi spae, we de�ne the salar produt of two four-vetors aµand bµ:

aµbµ = aµb
µ = a0b0 − ~a ·~b, (1.6)where ~a · ~b denotes the usual dot produt between three-vetors. Now we anonsider the geometrial struture of Minkowski spae, i.e. we take a look at thenorm of a four-vetor aµ:

aµaµ =
(
a0
)2 − |~a|2 (1.7)



9Here we see that the norm is not positive-de�nite. Four-vetors an be lassedinto three types, depending on the sign of their norm:
aµaµ =






< 0 aµ is spae-like
= 0 aµ is light-like
> 0 aµ is time-like (1.8)The metri tensor de�nes how to alulate the salar produt and hene, thelength of a vetor in Minkowski spae:

s2 = aµa
µ = aµgµνa

ν = (ct)2 − |~a|2 (1.9)Often another parametrization, the eigentime τ of a partile is used:
τ =

s

c
=
√

(ct)2 − |~x|2 (1.10)Sine in the frame where the partile is at rest in the origin (~x = const. ≡ 0), i.e.in the partile's own frame, τ is by de�ntion the time oordinate of the partile(we will see that τ is a Lorentz invariant quantity).With these de�nitions, Einstein's postulate an be formulated in a mathematialway.Transformations between referene frames S, S ′ moving with di�erent veloities(= Lorentz transformations) leave the length s of any 4-vetor on the light one(i.e. aµaµ = 0) in Minkowski spae invariant.Proof:Beause of general onsisteny arguments (homogeneity of Minkowski spae), nopoint in Minkowski spae should have more speial properties than any otherpoint. This means in partiular:Fundamental postulate of speial relativityThe length of any 4-vetor (with respet to the metri g) is invariant undertransformations from one inertial referene frame to another.



10 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS

x

ct

world line of (accelerated)

light cone
(world line of a photon)
x=ct

world line of a free, massive
particle: v=x/t<c

massive particle: |slope|>1 alwaysFigure 1.1: Classi�ation of 4-vetorsThe Lorentz transformations L desribe the relationship between the oordinates
xµ of two referene frames whih move relative to eah other. Assume that thereferene frame S ′ moves with veloity −~v relative to the referene frame S (~v‖x̂without loss of generality). The Lorentz transformation L an be derived fromthe ondition s2 =invariant. One �nds that only the primed oordinates x′0 and
x′1 are hanged while x2 and x3 are unhanged. If we set

γ =
1√

1 −
(
v
c

)2 , β =
v

c
(1.11)the transformation L an be written as:

(Lµν ) =




γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1


 (1.12)It follows thatdet(L) = ±1. (1.13)The sign of the determinant leads to a lassi�ation of the Lorentz transforma-tions.



11det(L) = +1 L0
0 ≥ 1 → proper orthohronous Lorentz transformation(no time reversal and no spae inversion)det(L) = −1 L0
0 ≥ 1 → improper orthohronous Lorentz transformation(no time reversal)det(L) = +1 L0

0 ≤ −1 → proper nonorthohronous Lorentz transformation(no spae inversion)det(L) = −1 L0
0 ≤ −1 → proper orthohronous Lorentz transformation1.1.2 Relativisti generalization of quantum mehanisThe Shrödinger equation

i~
∂

∂t
ψ(~x, t) =

(
− ~

2

2m
∆ + V (~x)

)
ψ(~x, t) (1.14)is obviously not relativistially ovariant (form invariant) sine it is of �rst orderin the time variable x0, but seond order in the position variable xa, a = 1, 2, 3.Hene a relativisti generalization of the wave equation is neessary. As willbe seen in more detail in the ourse of the leture, the ombination of speialrelativity and quantum mehanis has two important onsequenes:1. Relativistially, the mass - and hene the partile number - are not on-served any longer, but mass an be transformed into energy and vie versa,if there are interations present. Therefore, any relativisti quantum the-ory must be a theory of variable partile number and obtains the haraterof a �eld theory (i.e. a theory with in�nite number of degrees of freedomdue to in�nite partile number).

→ Number of partiles as a new quantum number haraterizing a quan-tumstate → seond quantization
→ Partiles an be reated and destroyed by interation → partiles andanti-partilesThe non-onservation of the partile number reurs also in open many-partile systems at non-relativisti energy, for instane in superondutorswhere eletrons form pairs and disappear in the superonduting onden-sate. Therefore, �eld theories for ondensed matter systems use similarmethods as relativisti �eld theories.



12 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS2. The motion of spin as an internal degree of freedom analogous (but notequivalent) to angular momentum follows neessarily from the ombinationof relativity and quantum mehanis.In non-relativisti quantum mehanis we ould to a large part use experimentalresults to obtain the Shrödinger equation (probabilisti nature of quantum me-hanis, interferene → wave funtions, orrespondene priniple). In relativistiquantum mehanis this is muh less the ase, and we have to resort more andmore to symmetry and onsisteny arguments, as will be seen below. This is ageneral feature (and strength) of modern theoretial physis.1.2 Spin 0 bosons: Klein-Gordon equationWe seek a wave equation (at �rst for a free partile) whih has no internal degree offreedom (spin 0). The state of the partile must be desribed by a one-omponentwave funtion (one-dimensional representation of the rotation group), i.e. it mustalso be a Lorentz salar ψ(xµ).For a free partile the relativisti energy-momentum relation is
E =

√
~p2c2 +m2c4. (1.15)Plugging this into the Shrödinger equation (1.14) one would obtain

i~
∂

∂t
ψ =

√
−~2c2~∇2 +m2c4ψ, (1.16)where we have used

~p =
~

i
~∇. (1.17)This form is problemati, beause it involves gradients of the wave funtion ofarbitrary order, as seen by expanding the square root. But this implies a non-loal �eld theory, whih would violate ausality. Therefore we make the Ansatzthat the equation above is quadrati in E:

−~
2 ∂

2

∂t2
ψ =

(
−~

2c2~∇2 +m2c4
)
ψ (1.18)



1.2. SPIN 0 BOSONS: KLEIN-GORDON EQUATION 13This is the Klein-Gordon equation. Using the notation
∂µ =

∂

∂xµ
∂µ =

∂

∂xµ
, (1.19)where xµ = (ct, x1, x2, x3) and xµ = (ct, x1, x2, x3) = (ct,−x1, −x2, −x3), wean rewrite the Klein-Gordon equation in a expliitly ovariant form. Thereforewe write

i~ ∂
∂(ct)

= i~ ∂
∂x0 = i~∂0

i~ ∂
∂xa = −i~∂a, a = 1, 2, 3

}
pµ −→ i~∂µ = i~

(
∂

∂(ct)

−~∇

) (1.20)and obtain the relativistially ovariant wave equation:
−~

2 ∂2

∂(ct)2
ψ(~x, t) = (−~

2 ~∇2 +m2c2)ψ(~x, t) (1.21)
⇔

[
∂µ∂

µ +
(mc

~

)2
]
ψ(xµ) = 0 (1.22)The operator

2 := ∂µ∂
µ = ∂2

0 − ~∇2 (1.23)is known as the d'Alembert operator whih is a salar under Lorentz transforma-tion. The fator mc
~

is the inverse Compton wave length.1.2.1 Free solutions of the Klein-Gordon equation -Conept of antipartilesThe free Klein-Gordon equation has the plane-wave solutions
ψ(~x, t) = exp

(
− i

~
(Et− ~p~x)

)
= exp

(
− i

~
pµx

µ

)
, (1.24)with

E = ±
√
~p2c2 + (mc2)2. (1.25)For a given momentum ~p there are always two solutions with equal, but oppositein sign energies. The solution with negative energy seems not to be meaningful



14 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSfor a free partile, sine rest mass and kineti energy are both non-negative. Anarbitrary solution of the Klein-Gordon equation an be written as a 4-dimensionalFourierintegral (~kµ = pµ)
ψ(xµ) =

∫
d4k
√

2π
4 δ

4

(
kµk

µ −
(mc

~

)2
)
A(kµ)e−ikµxµ

. (1.26)Where A(kµ) is arbitrary, i.e. the solutions with negative energy k0 < 0 annotbe disarded.Re-interpretation:We hoose always E = +
√
~p2c2 + (mc2)2 > 0 and the solutions:

ψ(+)(~x, t) = e−
i
~
(Et−~p·~x) (1.27)

ψ(−)(~x, t) = e−
i
~
(−Et−~p·~x) = e−

i
~
(E(−t)−~p·~x) (1.28)The solution with negative energy an be seen as that of a partile with positiveenergy propagating bakward in time. A partile propagating bakward in timeis alled antipartile. The onept of partiles and antipartiles will be developedfurther later on.Remark:The existene of E < 0 solutions is a onsequene of seond order in time deriva-tives. The wave equation must be of seond order in ∂/∂~x, sine the kinetiterm must be ∼ O(~p2) (more preisely: even order in ~p), in order to ful�ll spaeinversion symmetry (parity). The relativisti equation must therefore also beof seond order in ∂/∂(ct). The relativisti formulation neessarily implies theexistene of antipartiles.1.2.2 Continuity equation: Violation of partile numberonservation, onservation of energyIn order to derive a ontinuity equation desribing the onservation of the quan-tum mehanial probability, one must again observe that the Klein-Gordon equa-tion is of seond order in time. Reall that the probability density for theShrödinger equation is

ρ = ψ∗ψ (1.29)



1.2. SPIN 0 BOSONS: KLEIN-GORDON EQUATION 15and the probability urrent is
~ =

~

2mi

(
ψ∗~∇ψ − ψ~∇ψ∗

)
. (1.30)They obey the ontinuity equation

∂

∂t
ρ+ ~∇ · ~ = 0. (1.31)Now we determine the orresponding expressions for the Klein-Gordon equation.Multiplying the Klein-Gordon equation (1.22) from the left with ψ∗ we get

ψ∗
(
∂µ∂

µ +
(mc

~

)2
)
ψ = 0. (1.32)Taking the omplex onjugate leads to

ψ

(
∂µ∂

µ +
(mc

~

)2
)
ψ∗ = 0. (1.33)By alulating the di�erene of these equations we �nally get

∂µ (ψ∗∂µψ − ψ∂µψ∗) = 0, (1.34)whih an be written in a more familiar way as
∂

∂t

[
i~

2mc2

(
ψ∗ ∂

∂t
ψ − ψ

∂

∂t
ψ∗
)]

︸ ︷︷ ︸
ρ

+~∇ · ~

2mi

[
ψ∗~∇ψ − ψ~∇ψ∗

]

︸ ︷︷ ︸
~

= 0. (1.35)While the urrent ~ has the well known form, the probability density ρ identi�edfrom the ontinuity equation ontains a time derivative, again a onsequene ofthe seond-order-in-time nature of the Klein-Gordon equation. As a onsequene
ρ is in general not positive de�nite! For this reason, the Klein-Gordon equationwas at �rst rejeted, sine it did not seem to give positive probability. However,by Fourier transforming ρ(~x, t) in time for plane waves, one obtains:

ρ(ω, ~x) =
~ω

mc2
ψ∗ψ (1.36)This means that ρ must be interpreted as an energy density (in units of therest mass), rather than a partile density. This is in aordane to the generalobservation that partile numbers are not onserved in relativisti theories, butrather the total energy.



16 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS1.3 Spin 1
2
fermions: Dira equation1.3.1 Formulation of the Dira equation and Dira matriesThe Klein-Gordon equation was abandoned at �rst, beause it seemed to yieldnegative probability density. The interpretation as an energy density ame onlylater, after the onept of antipartiles had been introdued by Dira (�rst forthe ase of spin 1

2
fermions). In order to guarantee a positive de�nite probabilitydensity, we now seek a wave equation whih is of �rst order in time and whihis relativistially ovariant (without spin in mind yet!). It must still obey therelativisti energy-momentum relation

Ê =
√
p̂2c2 + (mc2)2 (1.37)However,1. the square root must be avoided (ausility) and2. the wave equation must be �rst order in the spae derivatives as well, inorder to be ovariant.Both requirements an be ahieved by making the Ansatz that the squared totalenergy of a partile an be written as a omplete square of a term involving themomentum only in �rst order. Hene this term must also be linear in the restenergy (Dira). This means

E2 = c2~p2 + (mc2)2 !
= (cα · ~p+ βmc2)2, (1.38)with ~α = (αx, αy, αz), β (spae independent). ~α, β must be determined suhthat the equality is ful�lled:

c2(p2
x + p2

y + p2
z) +m2c4 = c2(α2

xp
2
x + α2

yp
2
y + α2

zp
2
z) + β2m2c4 (1.39)

+c2pxpy(αxαy + αyαx) + c2pypz(αyαz + αzαy)

+c2pzpx(αzαx + αxαz) +mc3[px(αxβ + βαx)

+py(αyβ + βαy) + pz(αzβ + βαz)]



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 17It follows that αx, αy, αz, β annot be numbers, but must be matries, the Diramatries, whih obey the relations:

α2
i = β2 = 1

αiαj + αjαi =: [αi, αj]+ = 0

αiβ + βαi =: [αi, β]+ = 0

i = x, y, z (1.40)
i, j = x, y, z (1.41)
i = x, y, z (1.42)i.e. all α, β antiommute among eah other, or in ompat form:Algebra of the Dira matries

[Mµ,Mν ]+ = 2δµν1 (1.43)with
Mµ = β, αxαyαz. (1.44)Properties and determination of the Dira matries:1. αx, αy, αz, β are hermitean, in order for the Hamiltonoperator
H = c~α · ~p+ βmc2 to be hermitean.2. All eigenvalues of Mµ are λ = ±1.Proof: (for µ = ν)

(Mµ)2 = 1 (projetors!) (1.45)in eigenbasis of Mµ ⇒ λ = ±1 (1.46)
23. The trae of Mµ vanishes:tr(Mµ) = 0, µ = 0, 1, 2, 3 (1.47)



18 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSProof: (for µ 6= ν)
MµMν = −MνMµ (1.48)

⇔MµMµ
︸ ︷︷ ︸

1

Mν = −MµMνMµ (1.49)
⇒ tr(Mν) = −tr(MµMνMµ) (1.50)

= −tr(MνMµMµ
︸ ︷︷ ︸

=1

) (1.51)
= −tr(Mν) (1.52)
= 0 (1.53)

24. The dimension d of the matries αx, αy, αz, β is even.Proof: (diretly from 2. and 3.)
0 = tr(Mµ) =

d∑

i=1

λi =

d∑

i=1

(±1) ⇔ d is even (1.54)
25. The αx, αy, αz, β must be at least 4-dimensional (d ≥ 4), sine for d = 2there are exatly three hermitean Pauli matries obeying the Dira algebra,and this set annot be enlarged to inlude a fourth.The Dira matries are not uniquely determined by their algebra, but an behosen for d = 4 as

~α =

(
0 ~σ

~σ 0

)
, β =

(
1 0

0 −1

) (1.55)where ~σ = (σx, σy, σz) and
σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

) (1.56)



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 19are the Pauli matries. This is the standard representation of the Dira matries

~α, β. Using the orrespondene priniple, we now have the relativisti Diraequation:
i~
∂

∂t
ψ(xµ) = (c~α ·~p+βmc2)ψ(xµ) (1.57)with

~p = −i~~∇. (1.58)Sine αx, αy, αz, β are 4-dimensional matries, the ψ(xµ) must be a 4-dimensionalvetor in an abstrat representation spae (in general: d-dimensional, d even).
• ψ(xµ) is alled Dira spinor
• The fat that ψ(xµ) is a d-dimensional objet with d even implies that anyrelativisti partile desribed by the Dira equation has a two-fold internaldegree of freedom (i.e. omes in two �avors). This degree of freedom willbe identi�ed with partiles and antipartiles.The remaining two of the 2×2 = 4 = d degrees of freedom will be identi�ed withspin. The existene of partiles/antipartiles as well as of spin follows from therelativisti formulation. Higher dimensional representation of the Dira matriesare possible:
d = 2 · (2S + 1) even (1.59)The fator 2 ours beause of the partile/antipartile onept and S is the spin.This shows that the Dira spinors are not 4-vetors.1.3.2 Covariant form of the Dira equationThe standard representation of the Dira equation has non-trivial transformationproperties under Lorentz transformations, sine it represents the total energy of



20 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSa partile, whih is the 0-omponent of a Minkowski 4-vetor. It is onvenient towrite the Dira equation
i~
∂

∂t
ψ = (c~a · ~p+ βmc2)ψ (1.60)in expliitly ovariant form. In order to give it a de�nite transformation behavior,we multiply by 1

c
β

(−i~β∂0ψ + i~βαi∂iψ +mc)ψ = 0 (1.61)and de�ne
γ0 = β (1.62)
γi = βαi, i = 1, 2, 3. (1.63)(Here α, β obey the Dira algebra, but do not need to be determined expliitly)
[
−iγµ∂µ +

mc

~

]
ψ = 0 (1.64)Sine mc

~
is a Lorentz salar (m is the invariant rest mass), so must

γµ∂µ = γµ
∂

∂xµ
(1.65)be. Therefore γµ =

(
β

β~α

) is a ontravariant 4-vetor, i.e. transforms un-der Lorentz transformation as γ′µ = Lµνγ
ν , and the equation above is expliitlyLorentz ovariant.Shorthand notation:

γµuµ = γ0u0 − ~γ · ~u =: /u (u slash) (1.66)
(
−i/∂ +

mc

~

)
ψ = 0 (1.67)



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 21This is the Dira equation in an expliitly ovariant form.Properties of the γ matries (Dira matries):
γ0 = β is hermitean and (γ0)2 = 1 (1.68)

γi, i = 1, 2, 3 are antihermitean and (γi)2 = −1 (1.69)Proof:
(γi)† = (βαi)† = αiβ = −βαi = −γi (1.70)
(γi)2 = βαiβαi = −ββαiαi = −1 (1.71)

2It follows that the Dira γ matries obey the algebra:
[γµ, γν ]+ = 2gµν1 Dira algebra (1.72)In the standard representation of the ~a, β matries the γ matries read
γ0 =

(
1 0

0 1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 (1.73)An equivalent representation is obtained by the transformation

γ̃µ = AγµA−1, (A non-singular, arbitrary) (1.74)sine this leaves the Dira algebra valid. Hene the omponents of ψ are repre-sentation dependent and are not simple 4-vetors.1.3.3 Continuity equation for Dira spinorsDira spinor:
ψ =




ψ1...
ψ4


 , ψ† = (ψ∗

1 , . . . , ψ
∗
4) (1.75)



22 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSWe want to derive a ontinuity equation for the density
ρ = ψ† · ψ =

4∑

i=1

ψ∗
iψi, (1.76)whih involves

∂

∂t
(ψ†ψ) =

(
∂

∂t
ψ†
)
ψ + ψ†

(
∂

∂t
ψ

)
. (1.77)At �rst we onsider the Dira equation

i~

(
∂

∂t
ψ

)
= (−i~c~α · ~∇ + βmc2)ψ (1.78)and multiply by ψ† from the left side and obtain

i~ψ†
(
∂

∂t
ψ

)
= (−i~cψ†~α · ~∇ + βmc2ψ†)ψ. (1.79)Now we onsider the Hermitean onjugate of the Dira equation and multiply by

ψ from the right side:
−i~

(
∂

∂t
ψ†
)
ψ = i~

(
~∇ψ†

)
· c~αψ +mc2ψ†βψ (1.80)Calulating the di�erene of these equations one gets:

i~
∂

∂t

(
ψ†ψ

)
= −i~

[
ψ†(c~a) · (~∇ψ) + (~∇ψ†) · (c~α)ψ

] (1.81)
= −~∇ ·

(
ψ†(c~a)ψ

) (1.82)This leads to the ontinuity equation we aimed at:
∂

∂t
ρ+ ~∇ · ~ = 0 or ∂µj

µ = 0, (1.83)where
(jµ) =

(
cρ

~

)
, (∂µ) =

(
∂

∂(ct)
∂
∂~x

)
. (1.84)With

ρ = ψ†ψ

~ = ψ†(c~α)ψ = ~vρ

~v := c~α

Dira density (1.85)Dira urrent density (1.86)veloity operator in Dira theory (1.87)
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FERMIONS: DIRAC EQUATION 23Sine the Dira equation holds in any inertial referene frame (relativisti E-prelation), so does the ontinuity equation. Hene, jµ is indeed a ontravriant4-vetor, i.e. transforms aording to

j′
µ

= Lµνj
ν . (1.88)The disussion up to now has shown that the relativisti formulation of quantummehanis neessarily implies a fundamental reformulation of the wave equation.Two possibilities:1. The wave equation is seond order in time, implying

• positive and negative energy solutions −→ partile/ antipartile
• non-onservation of partile number, onservation of energy−→ bosons2. The wave equation is �rst order in time, but multiomponent wave funtion,implying
• spin, partiles/ antipartiles
• onservation of partile number −→ fermions1.3.4 Lorentz ovariane of the Dira equation: Lorentztransformation of the Dira spinors ψWe have derived the Dira equation as a representation of the relativisti energy-momentum relation

E2 = p2c2 + (mc2)2 (1.89)using the orrespondene priniple and postulating an equation linear in E/c =

i~ ∂/∂(ct) and ~p = −i~~∇. The E−~p relation is just an expression of the squaredlength of the energy-momentum 4-vetor
pµp

µ =

(
E

c

)2

− ~p2 = (mc)2, (1.90)whih is invariant under Lorentz transformations. Therefore, the Dira equationis by onstrution ovariant (shape invariant) under Lorentz transformations.



24 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSWe now alulate what this implies for the transformation of the Dira spinor ψunder Lorentz transformation:Although ψ is a 4-omponent objet, it is not a 4-vetor in Minkowski spae.This is obvious, beause there exist higher, even-dimensional representations ofthe γ matries (see above). Rather, ψ is a spinor in an abstrat representationspae, as will be seen later.Therefore, the transformation behaviour of ψ under Lorentz transformation isnot a priori obvious.Without restriting the generality we onsider only speial, orthohrone Lorentztransformations (no spae inversion, no time inversion, without translations frominertial referene frame I to referene frame I'):
xµ′ = Lµνx

ν x′ = Lx (1.91)(The matrix L is the representation of L in Minkowski spae.)The Dira ψ transforms under L aording to a linear transformation S(L):
ψ′(x′) = S(L)ψ(x) (1.92)

= S(L)ψ(L−1(x′)) (1.93)S(L) is the representation of L in the 4-dimensional spinor spae (i.e. S(L) is a
4 × 4 matrix in spinor spae).Lorentz ovariane of the Dira equation:

(
−iγµ∂µ +

mc

~

)
ψ(x) = 0 in frame I (1.94)

(
−iγµ∂′µ +

mc

~

)
ψ′(x′) = 0 in frame I ′ (1.95)The above ourring partial derivatives are shorten by

∂µ =
∂

∂xµ
and ∂′µ =

∂

∂xµ′
. (1.96)The γ matries an be hosen to be Lorentz invariant. This an be seen as follows:

γµ are determined by their algebra only up to a linear transformation,
γ̃µ = AγµA−1 (see above). (1.97)
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γµ′ = T (L)γµT−1(L). (1.98)Then we an always hoose in the referene frame a new basis representation γ̃′for the matries, suh that:
γ̃′ = γµ ⇒ A = T−1(L) (1.99)

2Now we onsider the behavior of the ovariant derivative under Lorentz transfor-mation.
∂µ =

∂

∂xµ
=
∂xν ′

∂xµ
∂

∂xν ′
= Lνµ∂

′
ν (1.100)Whih an be easily performed sine:

xν ′ = Lνµx
µ (1.101)

∂xν ′

∂xµ
= Lνµ (1.102)In (1.71) we obtained between ψ and ψ′ the relation

S−1ψ′(x′) = ψ(x). (1.103)Plugging this into the Dira equation (1.73) one �nds that
(
−iγµLνµ∂′ν +

mc

~

)
S−1ψ′(x′) = 0. (1.104)By multiplying with S from the left side we get

−iSLνµγµS−1∂′νψ
′(x′) +

mc

~
ψ′(x′) = 0. (1.105)Lorentz ovariane, omparing equation (1.83) with (1.74), we have the onditionfor S(L):

SLνµγ
µS−1 = γν (1.106)or

S−1(L)γνS(L) = Lνµγ
µ (1.107)



26 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSDetermining the representation S(L) expliitlyWe onsider in�nitesimal Lorentz transformations �rst. Representation in Minkwoskispae:
Lνµ = δνµ + ∆ωνµ, (1.108)where ∆ωνµ is in�nitesimal.Diagonal elements:

L0
0 = 1 (1.109)

Lab = cos(φ) rotation (1.110)
Lνν = cosh(φ) Lorentz boost (1.111)

⇒ Lνν = 1 +O(φ2) (1.112)O�-diagonal elements:
Lνµ ∼

{
sin(φ)

sinh(φ)

}
= O(φ), ν 6= µ (1.113)

⇒ ∆ωνν = O +O(φ2) (1.114)
(∆ωνµ) has at most 6 independent, non-zero elements to linear order in φ. Eahone generates an independent Lorentz transformation, 3 rotations, 3 Lorentzboosts in 3 spatial dimensions.Expansion of S(L) in powers of ∆ωνµ:

S = 1+ τ (1.115)
S−1 = 1− τ with τ in�nitesimal (1.116)Plugging this into equation (1.85) we �nd
(1− τ)γµ(1 + τ) = γµ + γµτ − τγµ +O(τ 2) (1.117)

= γµ + ∆ωµνγ
ν (1.118)

[γµ, τ ] = ∆ωµνγ
ν (1.119)
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[γµ, τ1 − τ2] = 0. (1.120)This yields
τ1 − τ2 = α · 1 withα ∈ R (1.121)

2Unique determination of τ : norm invariane
• S(L) must have the salar produt

ψ†(x)ψ(x) =
4∑

α=1

ψ∗
α(x)ψα(x) (1.122)in spinor spae, whih is invariant. (This implies that the density ρ =

ψ†(x)ψ(x) transforms only through the Lorentz ontration of the oordi-nates x, and hene that ρ has the orret behavior under Lorentz transfor-mations.)Thus we �nddet(S) = 1, (1.123)up to an irrelevant phase fator.
1 = det(S) = det(1+ τ) = det(1) + tr(τ) (1.124)

= 1 + tr(τ) +O(τ 2) (1.125)tr(τ) = 0 (1.126)The equations have the solutions
τ =

1

8
∆ωµν′g

ν′ν(γµγν − γνγµ) =
1

8
∆ωµν′g

ν′ν [γµ, γν] (1.127)



28 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSRepresentation of Lorentz transformation in Minkwoski and in Dira spae (in-�nitesimal transformation)
Lνµ = δνµ + ∆ωνµ (1.128)
S(L) = 1+

1

8
∆ωµν′g

ν′ν [γµ, γν ] (1.129)Finite Lorentz transformations
• Transformations in Minkwoski spae (4-vetors)A �nite Lorentz transformation, generated by the real tensor (ωνµ) anbe realized by N-times applying the in�nitesimal transformation

δνµ +
η

N
ωνµ, N → ∞ (1.130)(where η is a free parameter whih will be determined below).

Lνµ =

[
lim
N→∞

(
1 +

η

N
ω
)N]ν

µ

= (eηω)νµ (1.131)Example:Lorentz boost to a oordinate system moving in x diretion with velo-ity −β = −v/c

ω =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 =: (τ 01)x 101 :=




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 (1.132)
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(Lνµ) = 1 +

∞∑

k=1

1

k!
(ητx1)

k (1.133)
= 1 − 101 +

∞∑

k=0

1

(2k)!
η2k101 (1.134)

+
∞∑

k=0

1

(2k + 1)!
η2ki+1(τ 01)x

(Lνµ) = 1 − 101 + cosh(η)101 + sinh(η)(τ 01)x (1.135)
=




cosh(η) sinh(η) 0 0

sinh(η) cosh(η) 0 0

0 0 1 0

0 0 0 1


 (1.136)From this result we see that the parameter η of the transformation is relatedto v/c by

tanh(η) =
v

c
= β, (1.137)

cosh(η) = γ =
1√

1 −
(
v
c

)2 , (1.138)
sinh(η) = βγ. (1.139)

• Lorentz transformation of a Dira spinor
S(L) = lim

N→∞
[1+

η

N

1

8
(ωµν′g

ν′ν [γµ, γν]︸ ︷︷ ︸
(∗)

)]N (1.140)
= exp

(
η · 1

8
(ωµν′g

ν′ν [γµ, γν ])

) (1.141)[(∗) This produt is a 4×4 matrix in spinor spae and a salar in Minkowksispae℄



30 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSExample:Lorentz boost by −v/c in x diretion
ωµν′g

ν′ν [γµ, γν ] =







0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







µν(1.142)
× [γµ, γν ]

= 4α (1.143)Where we have used



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 (1.144)and

[γµ, γν ] = [γµ, γν]+ − 2γνγµ (1.145)
= 2gµν1− 2γνγµ (1.146)

[γ0, γ1] = −2γ1γ0 (1.147)
= −2

(
0 −σ1

σ1 0

)(
1 0

0 −1

) (1.148)
= −2

(
0 σ1

σ1 0

) (1.149)
= −2α1 (1.150)The transformation S(L) then beomes here

S(L) = exp
(η

2
α1

) (1.151)
=

∞∑

k=0

1

(2k)!

(η
2

)2k

+
∞∑

k=0

1

(2k + 1)!

(η
2

)2k+1

α1 (1.152)
S(L) = cosh(η/2)1+ sinh(η/2)α1 (1.153)
S(L) =




cosh(η/2) 0 0 sinh(η/2)

0 cosh(η/2) sinh(η/2) 0

sinh(η/2) 0 0 cosh(η/2)


 (1.154)
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• Lorentz transformation of bilinear forms of Dira spinorsWe investigate the behavior of bilinear forms like
jµ = c ψ†γ0

︸︷︷︸
ψ̄

γµψ = cψ†

(
1

~α

)
ψ (1.155)uner Lorentz transformation. To this end we need the relation between S†and S−1:

S†γ0 = bγ0S−1 (1.156)with
b =





+1, L00 ≥ 1 (orthohronous)
−1, L00 ≤ −1 (time reversal) (1.157)(See F. Shwabl, Advaned quantum mehanis, p. 144 for the proof)We introdue the shorthand notation

ψ̄ := ψ†γ0, (1.158)sine this ombination appears regularly in bilinear forms like jµ above.Lorentz transformation
ψ′ = Sψ (1.159)
ψ̄′ = ψ†S†γ0 = bψ†γ0S−1 = bψ̄S−1 (1.160)Hene, we have the transformations:� Vetor (4-urrent):

jµ = cψ̄γµψ (1.161)
jµ′ = cbψ̄ S−1γµS︸ ︷︷ ︸

=Lµ
νγν

ψ = cbLµνψ̄γ
νψ = bLµνj

ν (1.162)



32 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS� Lorentz salar or pseudosalar time reversal
ψ̄ψ = ψ†γ0ψ (1.163)
ψ̄′ψ′ = bψ̄S−1Sψ = bψ̄ψ (1.164)1.3.5 Non-relativisti limit of the Dira equation: Couplingto the eletromagneti �eld and the existene of spinStandard representation:

i~
∂

∂t
ψ = [c~α · ~p+ βmc2]ψ (1.165)In order to "probe" the nature of the partiles desribed by the Dira equation,we need to ouple the partiles to some external �eld, espeially the eletromag-neti �eld. As in non-quantum mehanis, the oupling to the eletromagneti�eld arises from the postulate of loal U(1) gauge invariane of the Dira equation.Phase transformation:

ψ(x) 7−→ ψ′(x) = e−iθ(x)ψ(x) (1.166)
∂

∂(ct)
7−→ ∂

∂(ct)
+ i

∂θ

∂(ct)
=: Dt (1.167)

∂

∂~x
7−→ ∂

∂~x
+ i

∂θ

∂~x
=: D~x (1.168)or pµ = i~

∂

∂xµ
7−→ pµ − ~

∂θ

∂xµ
= Πµ (1.169)Where the 4-vetor x is denoted as

x =

(
ct

~x

)
. (1.170)Generalizing the gradient �eld (∂θ/∂xµ) to an arbitrary �eld, the eletromagneti4-vetor potential is introdued:Kineti 4-momentum:

Πµ =
(
pµ −

q

c
Aµ

) (1.171)
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q

c
Aµ = ~

∂θ

∂xµ
(1.172)and q is the harge of the partile.Contravariant representation:

Πµ = gµνΠν = pµ − q

c
Aµ (1.173)

cΠ0 = i~
∂

∂t
− qΦ (1.174)

~Π = −i~ ∂

∂~x
− q

c
~A (kineti momentum) (1.175)Dira equation in an eletromagneti �eld:

i~
∂

∂t
ψ = [c~α ·

(
~p− q

c
~A
)

︸ ︷︷ ︸
~Π

+βmc2 + qΦ]ψ (1.176)We onsider the non-relativisti limit v ≪ c for Φ = 0 and obtain the Diraequation
Eψ =

[
c~α · ~Π + βmc2

]
ψ. (1.177)Stationary solutions:

ψ(t) = ψe−
i
~
Et (1.178)De�ning omponents

ψ(x) =

(
χ(x)

Φ(x)

)
, (1.179)where χ,Φ are 2-omponent spinors.

(
E −mc2 −c~σ · ~Π
−c~σ · ~Π E +mc2

)(
χ

Φ

)
= 0 (1.180)

(E −mc2)︸ ︷︷ ︸
Es

χ− c~σ · ~Π = 0 (1.181)
(E +mc2)︸ ︷︷ ︸
Es+2mc2

Φ − c~σ · ~Πχ = 0 (1.182)



34 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSWith Es the energy eigenvalue of the Shrödinger equation (shifted by mc2 withrespet to E).Non-relativisti ase, v ≪ c and small �eld ∣∣∣ qc ~A∣∣∣≪ |~p|:
Es ≈ ~p2

2m
≪ mc2 (1.183)

|~Π| ≈ m|~v| ≪ mc (1.184)
Φ =

(
c~σ · ~Π
E +mc2

)
χ (1.185)

E +mc2 = Es + 2mc2 ≈ 2mc2 (1.186)
c · |~Π| ≈ mc|~v| (1.187)∣∣∣∣

Φi

χi

∣∣∣∣ ∼= 1

2

v

c
≪ 1, i = 1, 2 (1.188)

Φ ∼= 1

2mc
(~σ · ~Π)χ (1.189)In the non-relativisti limit, χ and Φ are alled the large and small omponents,respetively.Eliminate the small omponent from the Dira equation:(1.148) in (1.140):

Esχ =
1

2m
(~σ · ~P i)(~σ · ~Pi)χ (1.190)Note that the produt in the brakets is a salar produt in position spae butthe produt of the terms in brakets is matrix produt. by replaing

Es −→ i~
∂

∂t
(1.191)we �nally obtain the Pauli equation:

i~
∂

∂t
ψ =

1

2m
(~σ · ~Π)(~σ · ~Π)ψ (1.192)Using the identity

(~σ · ~u)(~σ · ~v) = ~u · ~v + i~σ · [~u× ~v] (1.193)
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[~Π × ~Π] =
(
~p− q

c
~A
)
×
(
~p− q

c
~A
) (1.194)

= [~p× ~p]︸ ︷︷ ︸
=0

−q
c
[ ~A× ~p] − q

c
[~p× ~A] +

q2

c2
[ ~A× ~A]︸ ︷︷ ︸

=0

(1.195)
= −q

c
[ ~A× ~p] − q

c
[~p× ~A] +

q

c
[ ~A× ~p] (1.196)

=
i~q

c
[~∇× ~A] (1.197)

=
i~q

c
~B (1.198)one obtains:

i~
∂

∂t
χ =

[ 1

2m
(~p− q

c
~A)2 − q~

mc︸︷︷︸
=2µB

·1
2
~σ · ~B

]
χ (1.199)This equation desribes a 2-omponent spinor, whose 2 internal degrees of free-dom ouple to the magneti �eld like an angular momentum 1

2
~σ with a magnetimoment q~

mc
= 2µB = gµB.The relativisti theory predits spin 1

2
with a Landé fator g = 2.

µB =
q~

mc
Bohr magneton (1.200)1.3.6 Solutions of the Dira equation for free partilesWe set ~ = c = 1 from now on. Consider the free Dira equation:

(−iγµ∂µ +m)ψ = 0 (1.201)The rest mass m is then the only sale in the problem. A length or energy saleis reonstruted from it in a unique way by multiplying with appropriate fatorsof ~, c.
m −→ mc

~
=

1

λCompton inverse Compton wave length (1.202)
−→ mc2 = E0 rest energy (1.203)



36 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS1. Partiles at rest: ~pψ = 0Dira equation:
(−iγ0∂0 +m)ψ = 0 (1.204)Putting in the γ matrix expliitly one obtains:






1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 (−i∂0) +




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


m


ψ = 0 (1.205)This equation has normalized solutions:

ψ(+)(x) = ur(E = m, ~p = 0)e−imt r = 1, 2 (1.206)
ψ(−)(x) = vr(E = m, ~p = 0)e+imt m =rest energy (1.207)
u1(m,~0) =




1

0

0

0


 , u2(m,~0) =




0

1

0

0


 (1.208)

v1(m,~0) =




0

0

1

0


 , v2(m,~0) =




0

0

0

1


 (1.209)

(pµ) =

(
m
~0

) (1.210)There exist solutions with E > 0(u1, u2) and solutions with E < 0(v1, v2).2. Solutions with �nite momentum ~p and total energy EThese solutions an be obtained from the 4 solutions at rest by applying aLorentz transformation to an inertial frame with veloity −~v. Without lossof generality we hoose ~x‖~p: px = pThe relation between p and v is obtained from the Lorentz transformation
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(
E

p

)
=

(
γ βγ

βγ γ

)(
m

0

)
=

(
γm

βγm

) (1.211)
γ =

1√
1 − β2

(1.212)
β =

v

c
= v (1.213)

px = βγm (1.214)The fator γm is the relativisti mass enhanement . For the Lorentz trans-formation in Minkowski spae,
(
L µ
x ν

)
=




cosh η sinh(η) 0 0

sinh(η) cosh(η) 0 0

0 0 1 0

0 0 0 1


 . (1.215)The Dira spinors transform with

S(Lx) = cosh(η/2)1+ sinh(η/2)α1, (1.216)i.e.
u′1(E, ~p) =




cosh(η/2)

0

0

sinh(η/2)


 , u′2(E, ~p) =




0

cosh(η/2)

sinh(η/2)

0


 (1.217)

v′1(E, ~p) =




0

sinh(η/2)

cosh(η/2)

0


 , v′2(E, ~p) =




sinh(η/2)

0

0

cosh(η/2)


 (1.218)

u′i, v
′
i, i = 1, 2 an be expressed expliitly in terms of the energy E and themomentum p of the partile using

cosh(η) = γ =
E

m
sinh(η) = βγ =

px
m

(E > 0) (1.219)



38 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSand the theorems for the 1/2 arguments:
cosh(η/2) =

√
1

2
(cosh(η) + 1) =

√
1

2m
(E +m) (1.220)

sinh(η/2) = sgn(η)

√
1

2
(cosh(η) − 1) = sgn(px)

√
1

2m
(Em) (1.221)

= sgn(px)

√
1

2m

E2 −m2

E +m
= px

√
1

2m(E +m)
(1.222)

u1(E, px) =



√

1
2m

(E +m)χ1

px
√

1
2m(E+m)

χ2


 (1.223)

u2(E, px) =



√

1
2m

(E +m)χ2

px
√

1
2m(E+m)

χ1


 (1.224)

v1(E, px) =




px
√

1
2m(E+m)

χ2√
1

2m
(E +m)χ1


 (1.225)

v2(E, px) =




px
√

1
2m(E+m)

χ1√
1

2m
(E +m)χ2



 (1.226)with
χ1 =

(
1

0

)
χ2 =

(
0

1

)
. (1.227)As expeted from the analysis of the non-relativisti limit for v ≪ cthe upper omponents ofu1, u2 are ≈ 1,the lower omponents ofu1, u2 are ≈ v

2c
≪ 1,the upper omponents of v1, v2 are ≈ v

2c
≪ 1,the lower omponents of v1, v2 are ≈ 1.The solutions for arbitrary diretion of ~p are obtained by replaing

pxχ2 −→ ~σ · ~pχ1 (1.228)
pxχ1 −→ ~σ · ~pχ2. (1.229)
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FERMIONS: DIRAC EQUATION 39This an be shown by applying a rotation in 3-dimensional position spae tothe above solutions for ~p‖x̂, or by diret solution of the Dira equation. Thespae-time dependent phase fators of the solutions are Lorentz invariantand read:

e−imt
′

= e−ip
0′x0

′

︸ ︷︷ ︸in rest frame = e−ip
µxµ︸ ︷︷ ︸in moving frame (1.230)

= e−i(Et−~p~x) (1.231)
e+imt

′

= e
+ip0

′
x0

′

= e+ip
µxµ (1.232)

= e−i(−Et+~p~x) (1.233)Hene, the free solutions of the Dira equation with momentum ~p read:
ψ

(+)
~p,r (x) = ur(E, ~p)e

−i(Et−~p~x) (1.234)
ψ

(−)
~p,r (x) = vr(E, ~p)e

−i(−Et+~p~x) (1.235)with the relativisti dispersion E = +
√
p2 +m2. (Sine by onstrution

H2
D = −i~ ∂

∂t
, where HD is the Dira Hamilton operator.)Orthogonality relations of the ur, vr

ūr(k)us(k) = δrs r, s = 1, 2 (1.236)
~vr(k)vs(k) = −δrs (1.237)
ūr(k)vs(k) = 0 (1.238)
v̄r(k)us(k) = 0 (1.239)1.3.7 Angular momentum and spinWe have derived the generates of the Lorentz group both in Minkowski and in spinspae. Therefore, we an now identify the generates of 3-dimensional rotations,whih are, by de�nition the omponents of angular momentum. The rotation inspinor spae gives an additional ontribution, identi�ed with spin.

Lµν = δµν + ∆ωµν Minowski spae (1.240)
S(L) = 1+

1

8
∆ωµν [γµ, γν] Spinor spae (1.241)



40 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSA Dira spinor is a variable both in Minkowski and in Spinor spae. Rotation by
∆~ϕ, |∆~ϕ| = rotation angle.

∆ωij = −εijk∆ϕk (∆ω0
µ = ∆ωµ0 = 0) (1.242)De�ne:

σµν =
i

2
[γµ, γν] (1.243)

σij = σij = εijkΣk (1.244)One an show that
Σk =

(
σk 0

0 σk

) (1.245)where σk are the Pauli matries. Plugging the ommutator relation above inequation (1.204) one obtains:
S(L) = 1− i

4
∆ωµνσµν (1.246)And �nally:

ψ′(x′) = L {ψ(x)} = Sψ(x) = Sψ
(
L−1x′

) (1.247)1.3.8 Physial interpretation of the solutions of the Diraequation: The antipartile oneptAs seen in 1.2.6, the Dira-Hamiltonian has positive as well as negative energyeigenvalues E, beause β has the eigenvalues ±1.Free partiles with a negative energy spetrum whih is not bounded from beloware a problem beause of two reasons:1. kineti as well as rest energy should be positive2. there is no stable ground state; i.e. a partile ould go to in�nitely lowenergies via sattering proesses and the system would not be stable.In this setion we show at �rst that the E < 0 solutions annot simply be dis-arded as unphysial, beause they neessarily appear in physial systems inonnetion with the E > 0 solutions. We then give a physial interpretation ofthe E < 0 solutions, whih remedies the paradox.
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FERMIONS: DIRAC EQUATION 41Wave pakets and �Zitterbewegung�The general wave paket is given by the expression:

ψ(x) =

∫
d4p

(2π)4
δ(p2

0 −E2)
∑

s=1,2

[
(2π)2m b̃(p, s)Ws(p) e

−ipµxµ
] (1.248)wherein d4p

(2π)4
δ(p2

0 −E2) = d3p
E

is a Lorentz-invariant measure and the Deltafun-tion guarantees, that ψ is a solution of the Dira equation. The expansion oef-�ients are given by 2m b̃(p, s) and like always in this ontext is E =
√
|~p|2 +m2(relativisti dispersion).Furthermore we identify:

Ws(p) =

{
us(p), p0 > 0

vs(p), p0 < 0.
(1.249)Using δ(p2

0 −E2) = 1
2p0

[δ(p0 − E) + δ(p0 + E)] we get
ψ(x) =

∫
d3p

(2π)3

m

E

∑

s=1,2

[
b(p, s)us(p)e

−ipµxµ

+ d∗(p, s)vs(p)e
+ipµxµ] (1.250)with

b(p, s) = 2πb̃(E, ~p, s) (1.251)
d∗(p, s) = 2πb̃(−E, ~p, s). (1.252)a) Superposition of states with E > 0 onlyFor wave pakets ontaining only E > 0 solutions no unexpeted behavior ap-pears: d∗ ≡ 0, p0 = E.
ψ(+)(x) =

∫
d3p

(2π)
3
2

m

E

∑

s=1,2

b(p, s)us(p)e
−ipµxµ (1.253)



42 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSIn this ase the total urrent is given by
~J (+) =

∫
d3x

(2π)3
~ (+)(x) (1.254)

= c

∫
d3x

(2π)
3
2

ψ(+)†(x)~αψ(+)(x) (1.255)
= c

∑

s

∫
d3p

(2π)3

m

E

∣∣b(p, s)
∣∣2 ~p
E

(1.256)
=

〈
~p

E

〉
= 〈~vG〉 (1.257)

whih is the averaged group veloity over all states in the paket. The groupveloity itself is given by ~vG = ∂E
∂~p

=
∂
√

|~p|2+m2

∂~p
= ~p

E
. In (1.256) we have used theorthogonality relations for u, vb) Wave pakets ontaining E > 0 and E < 0 solutionsWave pakets whih are superpositions of E > 0 and E < 0 solutions of theDira equation annot be avoided generally. In this ase unexpeted behaviorappears, as the following example shows.Time evolution of a free and loalized wave paket whih ontains at t = 0only E > 0 omponents and its width is haraterized by a parameter d (totalwidth: 4d):

ψ(t = 0, ~x) =
1

(2πd2)
3
4

e
i~x~k− x2

(2d)2w (1.258)
wherein w is a pure E > 0 spinor, e.g. w =

(
χ1

0

)
=




1

0

0

0


.
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4d

k

Figure 1.2: Gaussian wave paketDeomposition of the Gaussian wave pakets into plane waves in order to desribeits time dependene using the Fourier transformation:
e
i~x~k− x2

(2d2) =

∫
d3p

(2π)3

(
4πd2

2π

) 3
2

e−d
2(~p−~k)

2 (1.259)whih is a Gaussian wave paket in ~p-spae shifted by ~k.Some further alulation delivers
b(p, s) = 2

3
2d3e−d

2(~p−~k)
2

u†s(vp)w 6= 0 (1.260)
d∗(p, s) = 2

3
2d3e−d

2(~p−~k)
2

v†s(p)w 6= 0 (1.261)what shows that the general wave paket ψ(t, ~x) ontains both E > 0 and E < 0omponents.The E < 0 omponents are important for a wave paket with initially only E > 0omponents, if the wave paket is loalized muh stronger than the partile'sCompton-wavelength χC :
d≪ χC =

~

mc

~,c=1
=

1

m
. (1.262)As we presupposed is w =
(
χ1

0

). Using the free partile spinors us, vs we get theratio
d∗(p)

b(p)
=

|~p− ~k|
E +m

(
|~k| ≪ 1

)
. (1.263)



44 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSFinally we use this ratio to show that the omponents with negative energy anbe negleted for less strong loalization of the partile but have to be onsideredfor strong loalization.
• weak partile loalization: Wave paket extension d≫ 1

m
:

|~p− ~k| . d−1 ≪ m ⇐⇒ d∗

b
≪ 1. (1.264)

• strong partile loalization: Wave paket extension d≪ 1
m
:

|~p−~k| ≈ d−1 ≫ m =⇒ |~p−~k| ≈ E ⇐⇒ d∗

b
≈ 1 (1.265)Zitterbewegung:In Physial expetation values suh as 〈~x〉 the ontributions with energies equalin size but opposite in sign lead to interferene terms with osillatory time de-pendene.(It should be mentioned that in the modulus squared of terms with only E > 0the time dependene anels out.)

〈~x〉 =

∫
d3xψ†(x)~xψ(x) (1.266)

d

dt
〈~x〉 =

d

dt

∫
d3xψ†(0, ~x)e+iHt~xe−iHtψ(0, ~x) (1.267)

=

∫
d3xψ†(t, ~x)i [H,~x]︸ ︷︷ ︸

−ic~α

ψ(t, ~x) (1.268)
=

∫
d3xψ†(x)c~αψ(x) = ~J(t) (1.269)

J i(t) =

∫
d3p

(2π)3

m

E

{
pi

E

∑

s

[
|b(p, s)|2 + |d(p, s)|2

] (1.270)
+ i
∑

s,s′

[
b∗(p, s)d∗(p, s)e2iEtus(p)σ

i0vs′(p) (1.271)
− b(p, s)d(p, s)e−2iEtvs′(p)σ

i0us(p)
]} (1.272)In this equation we see the time independent �rst part and a time dependentseond ontribution to the total urrent. The seond part ontains osillations(Zitterbewegung) with frequenies of 2E > 2mc2

~
= 2 × 1021s−1 for eletrons.
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I II

x1=x

V(x1)=q  (x1)φ

V0

Figure 1.3: 1-dimensional sattering wallSine V (x1) = const in the regions I and II respetively, there are �plane wavesolutions� with energy E.Region I:We use unnormalized wave funtions: Normalization fator √E+m
2m

is omitted!Inident wave from left with E > 0:
ψin(x) = e−iEteipx




1

0

0
p

E+m


 (1.273)Ansatz for the re�eted wave:

ψrefl(x) = e−iEt

{
ae−ipx




1

0

0
−p
E+m




︸ ︷︷ ︸
u1

+be−ipx




0

1
−p
E+m

0




︸ ︷︷ ︸
u2

} (1.274)
with

E = +
√
p2 +m2 > m, p = +

√
E2 −m2. (1.275)Aording to the interpretation (Pauli equation) the upper two omponents andthe lower two omponents, respetively, represent the spin. The seond term of
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ψrefl desribes a free partile with opposite spin where we will �nd below thatthe oe�ient b vanishes.Region II:Transmitted wave:

ψtrans(x) = eiEt

{
ceiqx




1

0

0
q

E−V0+m


+ deiqx




0

1
q

E−V0+m

0




} (1.276)with
q =





+
√

(E − V0)2 −m2, |E − V0| ≥ m

i
√
m2 − (E − V0)2, |E − V0| ≤ m

. (1.277)We should remark that the normalized solution has no singularity at E−V0 +msine q = 0.

E

q

Re(q)Re(q)

Im(q)

m+V0m−V0 V0

Figure 1.4: Transmitted wave solutionWith the given information we �nd...
• real, i.e. propagating solutions for

E ≥ m+V0 > 0 or E ≤ −m+V0 (if E ≥ m : V0 ≤ 2m) (1.278)
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• exponentially deaying solution for
−m+ V0 < E < m+ V0 (1.279)Sine the Dira equation is of �rst order in ∂

∂xµ , the wavefuntion must be on-tinuous, not its derivative:
ψI(0)

!
= ψII(0) (1.280)The onditions for the oe�ients a, b, , d result from the various omponentsof ψ:(i) 1 + a = c(ii) b = d(iii) −b p
E+m

= d q
E−V0+m

2.⇐⇒
b = d = 0unless V0 = 0 , p = q (trivial)(iv) (1 − a) = rc , r = q

p
E+m

E−V0+mTherefore the spin is not �ipped during the sattering proess, beause the oef-�ients b and d vanish.



48 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSDisussion of the solutions:
propagating
solutions

m
0

E>m

E

x

E−V0<−m
E<−m

(II)(I)

(2)

−m

E−V0>m

V0+mV +m

V0−m
m

(1)
0

Figure 1.5: Complete solution in both regionsPropagating solutions exist, if the absolute value of the energy, measured relativeto the potential level, is greater or equal to the rest energy m:
• region I : |E| > m

• region II : |E − V0| > m.We onsider regular and propagating inident waves E > m in region I and
V0 > 0:Propagating transmitted solutions exist for

1) E − V0 ≥ m for any V0 > 0 regular, E − V0 > 0

2)
E − V0 ≤ −m
E ≥ m

}
m ≤ E ≤ V0 −mfor E0 > 2m

irregular, E − V0 < 0.Therefore we onlude, that for E ≥ m and V0 ≥ 2m exists:
• a propagating transmitted solution in the well with negative energy om-pared to the potential V0

• a propagating re�eted solution with positive energy.
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jtrans ⊥ jrefl (1.281)The ontinuity of ψ at x = 0 delivers:
c =

2

1 + r
and a =

1 − r

1 + r
. (1.282)Furthermore we use the known expression

~j = cψ†~αψ with ~α =

(
0 ~σ

~σ 0

) (1.283)where, in this ase, c stands for the speed of light!The information on the diretion of ~j is enoded in the omponents of ψ andwe get:
jy = jz, jx 6= 0. (1.284)

jtrans

jin
=

4r

(1 + r)2
,

jrefl
jin

=

(
1 − r

1 + r

)2 (1.285)Therefore the urrent is onserved:
jtrans

jin
+
jrefl
jin

= 1. (1.286)However, for q, p > 0, m < E < V0 −m, i.e. V0 > 2m, E − V0 + m < 0, r < 0:
jrefl
jin

> 1,
jtrans

jin
< 0 (1.287)For the group veloity of the transmitted wave in x-diretion we �nd

vtrans,x =
dE

dq
=

d

dq

(√
q2 +m2

) (1.288)
=

2q

+
√
q2 +m2

=
2q

E − V0
= − 2q

|E − V0|
(1.289)what shows, that vtrans is opposite to q!



50 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSInterpretation:A stationary solution in the parameter range E > m, V0 > 2m and an inidentwave onto the well neessarily ontains a partile urrent jtrans oming out of thewell, or an antipartile urrent going into the well.The well does not provide any energy for partile-antipartile pair prodution(sine it is time independent and, hene, energy onserved).Rather, the proess orresponds to a partial onversion of partiles into antipar-tiles at the well boundary, without hange of the energy.Hole theory: Interpretation of the E < 0 solutions in terms of antipar-tilesWe now have to �nd a way to solve the problems with the E < 0 solutions of theDira equation whih are:
• E < 0 solutions are neessary as a part of the Dira equation's ompleteset of eigenstates to desribe the physial wave paket.
• Due to the E < 0 states matter would not be stable.A preliminary solution �rst was given by Dira. He supposed all the E < 0 statesto be oupied by one eletron eah. In this sense a deay of E > 0 eletrons into

E < 0 states is prevented by the Pauli priniple.
e−

e+

hω

p

EE(p)

Figure 1.6: Exitation of a partile-antipartile pair
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FERMIONS: DIRAC EQUATION 51Altogether the Vauum is to be seen as an in�nite sea of E < 0 partiles (ele-trons), the Dira sea.Unfortunately the Dira sea is not observable. Although it onsists of an in�nitenumber of harhed partiles, it does not reate any fore, beause of translationinvariane (in�nite and homogeneous).However: Problem of in�nite massConsequently the Dira sea an be observed only indiretly through its exi-tations.Antipartile oneptA missing eletron in the Dira sea with E < 0, ~p, harge q is equivalent to a realpartile with E > 0, −~p, harge − q; spin − σ, whih is alled an antipartile.In ase the partile is an eletron, its antipartile is the positron.For the reation of partile-antipartile pairs di�erent ways a oneivable:1. Time dependent �elds ~ω > 2mc2

hω

pFigure 1.7: Creation of partile-antipartile pairs



52 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS2. adiabati reation of E < 0 bound states: nulear ollisions
-4 -2 0 2 4

-3

-2

-1

0

1

xFigure 1.8: Adiabati reation of bound statesCorrespondene E < 0 solution - antipartileThe Dira sea equals the vauum state and therefore ψ(±) ≡ 0. In detail:
• ψ(+)(x): oupied E > 0, ~p, σ state: partile E > 0, ~p, σ, e
• ψ(−)(x): unoupied E < 0, ~p, σ state: antipartile −E > 0, −~p, −σ, −eExample: The Klein paradoxon

particle

particle

antiparticle

0

V

x

V

j in (+)

(+)

jrefl>j in

ψ(−)

j trans<0

V0>2m
m<E<V0−m

0

ψ

ψ

Figure 1.9: Klein paradoxonFinally we give a summary of the problems behind the idea of the Dira sea:
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• Non-observability: translation invariane
• In�nite mass problem
• Many partile problem: The onept of partile-antipartile pairs makesthe Dira sea idea inherently inomplete:Creation of many partiles� Loality of the theory implies that the partile an be loalized in theDira sea in an arbitrarily small length sale ∆x.� In detail:

∆p ≥ ~ ∆x−1 (1.290)
∆E ≈ c∆p ≥ ~c

∆x
(1.291)

=⇒ if ∆x <
1

2

~

mc
=

1

2
χC (1.292)

∆E ≥ 2mc2 (1.293)whih leads to partile-antipartile prodution (In equation 1.217 weused the Compton wavelength χC).I.e. the loality of the relativisti theory neessarily implies that onemust formulate it as a many-partile theory, whih leads to the �eldtheory.1.3.9 Disrete symmetries of the Dira equationCharge onjugation CThe re-interpretation of E < 0 solutions in terms of antipartiles with oppositequantum numbers and harge suggests that there is a symmetry of the Diraequation (i.e. a transformation whih leaves the Dira equation shape invariant)whih transforms the E < 0 solutions for harge e = −e0 < 0 into E > 0 solutionsfor harge −e = e0 > 0.This transformation will be alled harge onjugation C.



54 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSFor the onstrution of the transformation we start with the Dira equation forthe possible harges:for harge e: [γµ(i∂µ − eAµ) −m]ψ = 0 (1.294)for harge -e: [γµ(i∂µ + eAµ) −m]ψC = 0 (1.295)We onstrut the transformation C, whih transforms ψ into ψC: ψC = Cψ.The relative sign hange between i∂µ and eAµ is obtained by taking the om-plex onjugate of (1.245):
C̃ [−γµ∗(i∂µ + eAµ) −m] C̃−1C̃ψ∗ = 0. (1.296)However this also introdues relative sign between the kineti and the rest energyterms, and also hanges γµ −→ γµ∗.In order to revert these hanges, we look for a transformation C̃ suh that
C̃ γµ∗ C̃−1 = −γµ (1.297)Note that suh a transformation is allowed, sine the γµ are determined by theiralgebra only up to similarity transformations.Considering the γµ in the standard represantation,
γ0 = β =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 , (1.298)(1.248) indiates that C̃

• interhanges the upper and lower omponents an
• transforms σi −→ σi∗ (i = 1, 2, 3).This is performed by the matrix

C̃ =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 = iγ2 in standard representation (1.299)

C̃−1 = C̃ . (1.300)
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Cψ = C̃ψ∗ = iγ2 ψ∗ (standard representation) (1.301)
γµγν + γνγµ = 2gµν1 (1.302)
(iγ2)γµ∗(iγ2) = [(−i

−γ2

︷︸︸︷
γ2∗ )︸ ︷︷ ︸

=iγ2

γµ(−iγ2∗)]∗ (1.303)
= −[γ2γµγ2]∗ (1.304)
= −[γ2(2gµ2

1− γ2γµ)]∗ (1.305)
= [2δµ2γ2 − γµ]∗ (1.306)
=

{
−γµ , µ 6= 2

2γ2∗ − γ2∗ = −γ2 , µ = 2
(1.307)

where, in (1.256), we made use of (γ2)2 = −1.Altogether we onlude that C
• interhanges the upper and lower omponents of ψ, C̃

• transforms E −→ −E in the exponential fator of ψ, ( )∗

• inverts the momentum ~p −→ −~p

• �ips the spin (C̃)

• transforms from a solution for harge e to harge −e (by onstrution).
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ψ =




1

0
p√
E+m

0



e−i(Et−pz) (1.308)

Cψ =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0







1

0
p√
E+m

0



e+i(Et−pz) (1.309)

=




0
−p√

−E−m
0

1



e−i(−Et−(−p)z) (1.310)

where (1.258) is an E > 0 solution with ~p || ẑ, pz = p and spin ↑and (1.259) is an E < 0 solution with ~p || ẑ, pz = −p and spin ↓.Consequently the harge onjugation not only inverts the harge, but ompletelytransforms a partile solution into an antipartile solution and vie versa.Sine any spinor an be Fourier deomposed in terms of free spinors, this re-mains true for any solution for an arbitrary potential Aµ.
Time reversal (inversion of motion) TThe time reversal transformation T is de�ned by

T : t 7−→ −t (1.311)
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T : ~p 7−→ −~p (momentum) (1.312)
~L = [~r × ~p] 7−→ −~L (angular momentum) (1.313)

~S 7−→ −~S (spin analogous to ~L) (1.314)
Φ(~x, t) 7−→ Φ(~x,−t) = Φ(~x, t) (1.315)
~A(~x, t) 7−→ ~A(~x,−t) = − ~A(~x, t) (1.316)
e 7−→ e (same for q in operators) (1.317)

(1.264),(1.265)
=⇒ Aµ(~x, t) 7−→ Aµ(~x, t) (el.-magn. 4-potential) (1.318)We onstrut the time reversal transformation from the form invariane of theDira equation:

[γµ(i∂µ − eAµ) −m]ψ = 0 (1.319)Time reversed Dira equation:
[γµ(−i∂µ − egµνAν) −m]ψT = 0 (1.320)with ψT = Tψ the time reversed spinor.One an hose:
ψT = Tψ = iΣ2ψ∗ (1.321)

with iΣ2 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 = i

(
σ2 0

0 σ2

)
. (1.322)Note: For salar partiles is C ≡ T !
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P : ~x 7−→ −~x t 7−→ t , E 7−→ E (1.323)

~p 7−→ −~p (1.324)
~L 7−→ +~L (1.325)
~S 7−→ +~S (1.326)
Aµ 7−→ Aµ

{
Φ 7−→ Φ
~A 7−→ − ~A

(1.327)Parity transformation of the Dira spinorThe phase fator e−ipµxµ remains invariant, sine
P : p0 7−→ p0 , x0 7−→ x0 (1.328)

pi 7−→ −pi , xi 7−→ −xi , i = 1, 2, 3. (1.329)From the parity symmetry of the Dira equation one obtains, in a way analogousto C, T:
Pψ(~x, t) = γ0 ψ(−~x, t) with γ0 =

(
1 0

0 −1

)
. (1.330)1.3.10 Separation of Spinor omponents into spin and partile-antipartile degrees of freedom: The Foldy-WouthuysentransformationProblem: Physial meaning of the Dira spinor omponentsHaving derived the spin operator ~Σ = ~

2

(
~σ 0

0 ~σ

) and having introdued thepartile- antipartile degree of freedom, we are now able to disuss the meaningof the 4-spinor degrees of freedom for the general ase, i.e. not only in the non-relativisti limits. This will ultimately lead to the systemati treatment of therelativisti orretions to the Shrödinger dynamis.
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ψ
(+)
~p=0 , ↑ =




1

0

0

0


 e−imt , ψ

(+)
~p=0 , ↓ =




0

1

0

0


 e−imt , E = m > 0 (1.331)

ψ
(−)
~p=0 , ↑ =




0

0

1

0


 e+imt , ψ

(−)
~p=0 , ↓ =




0

0

0

1


 e+imt , E = −m < 0 (1.332)

These are eigenstates of the spin operator Σz = ~

2




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 as indi-ated, i.e. the upper two omponents desribe the spin of partiles, the lower twoomponents the spin of antipartiles, in aordane to the Pauli equation.However, for free, moving partiles one obtains after a Lorentz boost in the stan-dard representation:
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• For motion in z-diretion (|| spin quantization axis ẑ)

ψ
(+)
~p||bz , ↑(x) =

√
E +m

2m




1

0
pz

E+m

0


 e−ipµxµ E > 0 (1.333)

ψ
(+)
~p||bz , ↓(x) =

√
E +m

2m




0

1

0
pz

E+m


 e−ipµxµ (1.334)

ψ
(−)
~p||bz , ↑(x) =

√
E +m

2m




pz

E+m

0

1

0


 e+ipµxµ E < 0 (1.335)

ψ
(−)
~p||bz , ↓(x) =

√
E +m

2m




0
pz

E+m

0

1


 e+ipµxµ (1.336)

z||p^ ^

ΣzFigure 1.10: Motion in z-diretion
These are eigenstates of the spin Σz with eigenvalues s = ±1

2
~, as forpartiles at rest.
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• For motion in x-diretion (⊥ spin quantization axis ẑ)
ψ

(+)
~p||bx , ↑(x) =

√
E +m

2m




1

0

0
pz

E+m


 e−ipµxµ E > 0 (1.337)

ψ
(+)
~p||bx , ↓(x) =

√
E +m

2m




0

1
pz

E+m

0


 e−ipµxµ (1.338)

ψ
(−)
~p||bx , ↑(x) =

√
E +m

2m




0
pz

E+m

1

0


 e+ipµxµ E < 0 (1.339)

ψ
(−)
~p||bx , ↓(x) =

√
E +m

2m




pz

E+m

0

0

1


 e+ipµxµ (1.340)

z

x||p^ ^

^

Figure 1.11: Motion in x-diretionThe mixing of upper and lower omponents ours beause in the standard rep-resentation the Dira equation has o�-diagonal bloks:
1 i

∂

∂t
ψ =

(
m+ eΦ ~α · ~π

ւ

ր
~α · ~π −m+ eΦ

)
ψ = Hψ. (1.341)Sine the representation of the γµ matries is unique only up to an arbitrarysimilarity transformation

γ̃µ = AγµA−1 (1.342)



62 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSit is possible to �nd a representation suh that E < 0 solutions have only upperomponents and E < 0 solutions have only lower omponents, i.e. a seperationof partile and antipartile solutions in upper and lower omponents is possible.The unitarity transformation separating partile and antipartile omponents isde�ned suh that it brings the Dira equation to blok diagonal form.In general, this transformation is di�ult and time dependent, sine it requirestransforming the exat, time dependent, solutions ψ.De�nition:
• Operator with only diagonal bloks: even operator
• Operator with only o�-diagonal bloks: odd operatorThese spinors are not eigenstates of Σz and have a redued σz expetation value:
〈σz〉 = ±m

E

~

2
! (1.343)For veloity |~v| → c, i.e. E =

√
p2 +m2 → ∞:

〈σz〉px→∞ = 0 similarly: 〈σy〉px→∞ = 0. (1.344)The spin polarization of partiles moving at the speed of light, |~v| → c, is eitherparallel or antiparallel to the diretion of motion, what leads to heliity.
x

v=cFigure 1.12: HeliityFrom this example we see that, in the standard representation of the γµ matries,for general, moving partiles the spin and partile-antipartile degrees of freedomare mixed among the 4-spinor omponents (i.e. ψ(+) has both upper and loweromponents, and has, in general, no de�nite z-omponent of spin).Only in the non-relativisti limit the upper two omponents orrespond to parti-les (spin ↑, ↓) and the lower two omponents to antipartiles (spin ↑, ↓).
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ψ
(+)†
~p||bx , ↑ · ψ

(+)
~p||bx , ↑ =

E +m

2m

(
1 0 0 px

E+m

)



1

0

0
px

E+m


 (1.345)

=
E +m

2m

(E2 +m2 + 2Em) +

E2−m2

︷︸︸︷
p2

(E +m)2
(1.346)

=
E +m

2m

2E2 + 2Em

(E +m)2
=

E

m
(1.347)

whih anels with the invariant measure in ∫ d4x for total laprobability.Therefore we get:
〈σz〉 =

normalization︷︸︸︷
m

E
ψ

(+)†
~p||bx , ↑ Σz ψ

(+)
~p||bx , ↑ (1.348)

=
m

E

E +m

2m

(E2 +m2 + 2Em) − p2

(E +m)2
(1.349)

=
m

E

E +m

2m

2m2 + 2Em

(E +m)2
=

m

E
. (1.350)



64 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSFinally the general spinor is given by:
ψ

(+)
~p , ↑(x) =

√
E +m

2m




1

0
pz

E+m
px+ipy

E+m


 e−ipµxµ E > 0 (1.351)

ψ
(+)
~p , ↓(x) =

√
E +m

2m




0

1
px+ipy

E+m
pz

E+m


 e−ipµxµ (1.352)

ψ
(−)
~p , ↑(x) =

√
E +m

2m




pz

E+m
px+ipy

E+m

1

0



e+ipµxµ E < 0 (1.353)

ψ
(−)
~p , ↓(x) =

√
E +m

2m




px+ipy

E+m
pz

E+m

0

1


 e+ipµxµ (1.354)

The Foldy-Wouthuysen transformationThe separating transformation an be found systematially in powers of E−m
m

,whih, hene, leads to systemati relativisti orretions.In general:
A−1 =: e−iS , S hermitean, time dependent; e−iS deouples the upper and lower
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ψ′ = e+iS ψ (1.355)
i
∂

∂t
e−iSe+iS︸ ︷︷ ︸

1

ψ = H e−iSe+iS︸ ︷︷ ︸
1

ψ Dira equation (1.356)
i
∂

∂t

(
e−iS ψ′)

︸ ︷︷ ︸
i( ∂

∂t
e−iS)ψ′+ie−iS ∂

∂t
ψ′

= H e−iS ψ′ ∣∣e+iS · (1.357)
i
∂

∂t
ψ′ = e+iS

(
H − i

∂

∂t

)
e−iS

︸ ︷︷ ︸
H′

ψ′. (1.358)
wherein H′ is blok-diagonal.a) The Foldy-Wouthuysen transformation for free partiles

H = ~α · ~p+ βm =

(
1m ~α · ~p
~α · ~p −1m

)
= βm+ O︸︷︷︸

odd

(1.359)For ~B =




Bx

0

Bz


 in the x-z plane analogous to diagonalizing H = σxBx + σzBz

Θ

σ
z

x

y

Figure 1.13: Rotation by an angle ϑ0 about the y-axis(→ e
i
2
σyϑ0 = e−

1
2
σzσxϑ0).



66 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSFor the transformation we hose the following Ansatz:
e±iS = e±

σz︷︸︸︷
β

σx︷ ︸︸ ︷
(~α · p̂ )ϑ(~p) = 1 cosϑ± β(~α · ~p ) sinϑ (1.360)

= e±βO ϑ
|~p | (time independent) (1.361)with p̂ =

~p

|~p | (1.362)where in (1.308) we used a Taylor expansion. Furthermore:
H′ = eiS H e−iS (1.363)

= eβ(~α·bp )ϑ(~α · p̂+ βm)(1 cosϑ− β(~α · p̂ ) sinϑ) (1.364)
= eβ(~α·bp )ϑ (1 cosϑ+ β(~α · p̂ ) sinϑ)︸ ︷︷ ︸

eβ(~α·bp )ϑ

(~α · p̂ + βm) (1.365)
= (cos 2ϑ+ β(~α · p̂ ) sin 2ϑ)(~α · p̂+ βm) (1.366)
= ~α · ~p

(
cos 2ϑ− m

|~p |

)

︸ ︷︷ ︸
!
= 0

+βm

(
cos 2ϑ+

|~p |
m

sin 2ϑ

) (1.367)
=⇒ tan 2ϑ =

|~p |
m

(1.368)
sin 2ϑ =

p√
m2 + p2

=
p

E
, cos 2ϑ =

m√
m2 + p2

=
m

E
(1.369)in (1.313) we used the anti-ommutator [α , β]+ = 0.We now put (1.317) into (1.315) to get the �nal result for H′:

H′ = βm

(
m

E
+

|~p |2
mE

)
= β

1

E

(
|~p |2 +m2

) (1.370)whih is blok diagonal and wherein E is the energy eigenvalue and ~p is an oper-ator.For small momenta: |~p | ≪ m

iS = βO ϑ

|~p | ≈ βO 1

2m
(1.371)
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e±β(~α·bp )ϑ =

∞∑

k=0

1

(2k)!
[β(~α · p̂ )]2k +

∞∑

k=0

1

(2k + 1)!
[β(~α · p̂ )]2k+1 (1.372)

(~α · p̂ )2 = αipiαjpj =
1

2
{αi, αj}
︸ ︷︷ ︸

δij

pipj = |~p |2 (1.373)
Foldy-Wouthuysen transformation in an eletromagneti �eld

H = ~α ·
(
~p− e ~A

)
+ βm+ eφ = βm+ ε+ O (1.374)with ε = 1eφ βε = ε (1.375)

O = ~α(~p− e ~A) βO = −Oβ (1.376)where in (1.322) the βm-term is the O(m)-term expliitly written in order togenerate an 1
m
expansion.As in the �eld-free ase we expet that in the non-relativisti limit the properFoldy-Wouthuysen transformation is given by:

iS =
β

2m
O now with O = ~α·

(
~p− e ~A

)
. (1.377)The relativisti ase an then be treated by repeating this transformation su�-iently often, leading to an expansion in |~p−e ~A|

m
.

H′ = eiS
(

H − i
∂

∂t

)
e−iS (1.378)wherein ∂

∂t
only ats on e−iS.With the Baker-Campbell-Hausdor� identity:

eABe−A = B+[A ,B]+
1

2
[A , [A ,B]]+. . .+

1

k!
[A , [A , . . . , [A ,B] . . .]]︸ ︷︷ ︸k ommutators + . . . (1.379)
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H′ = H + i[S ,H] +

i2

2
[S , [S ,H]] (1.380)

+
i3

6
[S , [S , [S ,H]]] +

i4

24

ontains O( 1
m3 ) terms

︷ ︸︸ ︷
[S , [S , [S , [S ,H]]]] (1.381)

− Ṡ − i

2
[S , Ṡ] − i2

6
[S , [S , Ṡ]] + . . . (1.382)With the ommutation relations for β and ~α the term of �rst order in 1

m
is givenby:

i[S ,H] = −O +
β

2m
[O , ε] +

1

m
βO2 (1.383)wherein the �rst O anels the odd term to O

(
1
m0

).Computing all ommutators, disregarding the time dependene of the �elds(Ṡ = −i β
2m

Ȯ ≡ 0), we obtain:
H′ = βm+

ε′︷ ︸︸ ︷
β

(O2

2m
− O4

8m2

)
+ ε (1.384)

− 1

8m2
[O , [O , ε]] +

β

2m
[O , ε] − O3

3m2︸ ︷︷ ︸
O′

= βm+ ε′ + O′ (1.385)with O′ ∼ O
(

1
m

) only.The odd terms an be determined to O
(

1
m

) by another Foldy-Wouthuysen trans-formation, de�ned by
iS =

β

2m
O′ ∼ O

(
1

m2

)
. (1.386)

H′′ = βm+ ε′ +
β

2m
[O′ , ε′] +

(even and odd terms of O( 1

m4

))(1.387)
= βm+ ε′ + O′′. (1.388)
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2m
O′′ ∼ O

(
1
m3

) blokdiagonal-izes H to O
(

1
m3

):
H′′′ = β

(
m+

O2

2m
− O4

8m3

)
+ ε− 1

8m2

[
O , [O , ε] + iȮ

]
+O

(
1

m4

) (1.389)with only even powers of O −→ H′′′ is even up to O
(

1
m3

).Evaluating the powers of O in H′′′ one obtains �nally
H′′′ = β

(
m+

(
~p− e ~A

)2

2m
− 1

8m3

[(
~p− e ~A

)2

− e~Σ · ~B
]2)

+ eφ (1.390)
− e

2m
β ~Σ · ~B − e

8m2
~Σ ·
[
~∇× ~E

]

− e

4m2
~Σ ·
[
~E ×

(
~p− e ~A

)]
− e

8m2
~∇ · ~E .In H′′′ the upper and lower omponents are deoupled.For partile solutions (E > 0): ψ′ =

(
χ
0

):
i
∂ϕ

∂t
=

{
m+ eφ+

1

2m

(
~p− e ~A

)2

− e

2m
~σ · ~B (1.391)

−(|~p |2)2

8m3
− e

4m2
~σ ·
[
~E ×

(
~p− e ~A

)]
− e

8m2
~∇ · ~E

}
ϕwherein up to the third term in order of their appearane one reognizes thepartile's rest energy, its kineti energy and furthermore the spin and Landéfator.This Hamiltonian also ontains the relativisti orretions:1. Relativisti mass orretion H1 = − (|~p |2)2

8m3From expansion:
|~p |2

2
√
m2 + p2

=
|~p |2
2m

− (|~p |2)2

8m3
+ . . . (1.392)



70 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS2. Spin-orbit ouplingfor entral symmetri potential:
E = −~∇φ(r) = −1

r

∂φ

∂r
~r , ~A = 0 (1.393)

~σ ·
[
−1

r

∂φ

∂r
~r × ~p

]
= −1

r

∂φ

∂r

(
~σ · ~L

) (1.394)
H2 =

e

4m2

1

r

∂φ

∂r

(
~σ · ~L

) (1.395)what means that the Spin-orbit oupling is strongest for ∂φ
∂r

large, i.e. inheavy elements or near surfaes of metals.3. Darwin term
H3 = − e

8m2
~∇ · ~E (1.396)

H3 is sensitive to loal variations of the eletri �eld, and an, therefore, beinterpreted as due to the Zitterbewegung with an amplitude ∼ λCompton =
~

mc
.1.4 Further representations of the Dira equation1.4.1 Massless fermions (neutrinos)For massless partiles (m = 0) the Dira equation reads

γµpµ ψ = 0 or (1.397)
1p0 ψ = c~α · ~p ψ (1.398)It is seen that for m = 0 only three matries obeying the Dira equation appear,

{αi, αj} = 2i εijkαk. Therefore a 2-dimensional representation of the Dira equa-tion in terms of Pauli matries is possible.In the following we investigate what these two omponents orrespond to physi-ally, and why in the massless ase the number of degrees of freedom is reduedfrom four to two.
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√
p2c2 + (mc2)2 for free partiles, it follows thatfor m = 0 the groupveloity is (E > 0 solutions):

~v~p =
∂E

∂~p
m=0
=

∂

∂~p
(|~p |c) = c

~p

|~p | , (1.399)i.e. massless partiles move at the speed of light.But, as we have seen in setion 1.3.10.1, partiles moving at the speed of light(
|~p |
E

= 1
) annot have a non-zero expetation value of spin omponents perpen-diular to ~p: 〈σ⊥〉 = 0 for m = 0.It should be mentioned that the perpendiular omponents an �utuate abouttheir vanishing expetation value: 〈~σ2

⊥〉 > 0 in general, just like a σz eigenstatehas �utuating σx, σy omponents.As will be seen, the redution of degrees of freedom from four to two orrespondsto the absene of perpendiular (transversal) spin omponents in the masslessase.Beause of the longitudinal1 nature of spin for m = 0, it is useful to onsider theprojetion of the spin operator ~Σ along the diretion of ~p:
ĥ(~p ) = ~Σ · ~p

|~p | heliity operator (1.400)
ĥ(~p ) obeys

(
~Σ · ~p

|~p |2
)2

=
3∑

i,j=1

ΣiΣj
pipj
|~p |2 (1.401)

=

3∑

i=1

Σ2
i︸︷︷︸

=1

p2
i

|~p |2 = 1, (1.402)beause for plane waves:
pipj =

{
0 , i 6= j

p2
i , i = j

(1.403)1Note: For general, non-plane wave states the longitudinality holds for suh omponents oftheir Fourier deomposition into momentum eigenstate.



72 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSI.e. ĥ(~p ) has the eigenvalues heliity h = ±1.
Σ

Σ

p

p helicity h=+1

helicity h=−1Figure 1.14: Eigenvalues of the heliity operatorAs easily be veri�ed (~Σ · ~p
) ommutes with the Dira Hamiltonian H:

[
~Σ · ~p , (c~α · ~p+mc2)︸ ︷︷ ︸

H

]
= 0 (1.404)so that (~Σ · ~p

) and H an be diagonalized simultaneously.Therefore we seek a representation of the massless Dira equation in terms of(
~Σ · ~p

):
γµpµ ψ = 0 or (1.405)
~γ · ~p ψ = γ0p0 ψ with ~γ =

(
0 ~σ

−~σ 0

) (1.406)
−→ ~Σ · ~p and ~Σ =

(
~σ 0

0 ~σ

) (1.407)Therefore ~γ is transformed into ~Σ by multiplying with ( 0 −1
1 0

) whih an berepresented as
(

0 −1
1 0

)
= γ5γ0 , γ5 ≡ iγ0γ1γ2γ3

︸ ︷︷ ︸in general =

(
0 1

1 0

)

︸ ︷︷ ︸standard representation (1.408)Multiplying the Dira equation, m = 0, with γ5γ0 from left delivers �nally:
~Σ · ~p ψ = γ5p0 ψ (1.409)
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]

= 0 these operators an be diagonalized simultaneously, whihleads to the followingDe�nition:
γ5 = iγ0γ1γ2γ3 is alled the hirality operator. (1.410)Equation (1.355) is brought to blok diagonal form by applying the unitarytransformation
ψch = Uψ with U =

1√
2

(
1+ γ5

) (1.411)
γµ ch = Uψ U−1 et., (1.412)leading to two independent 2-omponent equations, the Weyl equations:
(
p0 − ~σ · ~p

)
ψch

1 = 0 (1.413)
(
p0 + ~σ · ~p

)
ψch

2 = 0 (1.414)with the 2-omponent heliity operator ~σ · ~p
|~p | .

ψch = 1√
2

(
1+ γ5

) is alled the hiral representation.The Weyl equations are, eah one by itself, not parity invariant (~σ ·~p P7−→ −~σ ·~p),but transform mutually into eah other. The onsequene is, that if a partile isdesribed by one of the Weyl equations, parity is not an allowed transformation,i.e. the partile ours either with heliity h = +1 or h = −1 in nature, but an-not our with either one. For this reason, the Weyl equations were historiallynot onsidered further at �rst.However, experiments showed that the only known massless fermion, the neu-trino, does indeed our in nature only with heliity h = −1 and are alledlefthanded. With the same bakground antineutrinos with h = +1 are alledrighthanded. This shows that neutrinos are indeed desribed by the simplest pos-sible, 2-dimensional representation of massless fermions.Outlook:Experiments by Wu et al. showed that parity is not onserved by the weak inter-ation (SU(2) gauge interation), i.e. the weak interation ouples the two Weyl
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2observed �rst time in 2002; Kamiokande, Japan



1.4. FURTHER REPRESENTATIONS OF THE DIRAC EQUATION 751.4.2 Majorana representationDe�nition: Majorana representation of the γ matries:
• γ0 imaginary, antisymmetri
• γk imaginary, symmetriExample:
γ0 =

(
0 σ2

σ2 0

)
,

γ1 = i

(
0 σ1

σ1 0

)
,

γ2 = i

(
1 0

0 −1

) (1.415)
σ3 = i

(
0 σ3

σ3 0

) (1.416)It follows that in Majorana representation the free Dira equation is real:
[
iγµ∂µ −m

]
ψ = 0 . (1.417)The harge onjugation is in Majorana representation:

ψC = ψ∗ , sine (1.418)
[
γµ(i∂µ − eAµ) −m

]
ψ = 0 | ∗ (1.419)

[
− γµ(−i∂µ − eAµ) −m

]
ψ∗ = 0 (1.420)

[
γµ(i∂µ + eAµ) −m

]
ψ∗ = 0 ψ∗ = ψC (1.421)While the Majorana representation is ompletely general, it is espeially usefulfor neutral fermions:

ψ an be hosen real (ψ∗ = ψ) in this ase and is alled Majorana spinor. There-fore a Majorana spinor has half as many degrees of freedom than a Dira spinor.
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