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Appendix B
Theory of omplex funtions(essentials)1. De�nitionLet z = x + iy ∈ C and

f : z 7−→ f(z) = u(x, y) + i v(x, y) ∈ C (B.1)a omplex funtion of z, with real part u(x, y) and imaginary part v(x, y).The funtion f is alled analyti in a regionA ⊂ C, if the partial derivatives ∂u
∂x , ∂u

∂y , ∂v
∂x , ∂v

∂yexist, and
∂u

∂x
=

∂v

∂y

∂u

∂y
= −

∂v

∂x

(B.2)for z = x + iy ∈ A ⊂ C.QM.pdf Examples:(a) f(z) = zn, n = 0, 1, 2, . . . is analyti in C.Proof: Complete indution1. n = 1 : f(z) = x + iy = u + iv (B.3)
∂u

∂x
= 1 =

∂v

∂y
(B.4)

∂u

∂y
= 0 = −

∂v

∂x
(B.5)175



176 APPENDIX B. THEORY OF COMPLEX FUNCTIONS (ESSENTIALS)2. fn(z) = zn is analyti3. fn+1(z) = zn+1 = fn(z) · z (B.6)
= (unx − vny)︸ ︷︷ ︸

un+1

+i (vnx + uny)︸ ︷︷ ︸
vn+1

(B.7)
∂un+1

∂x
=

∂vn

∂y
x + un +

∂un

∂y
y (B.8)

=
∂vn+1

∂y
(B.9)

un+1

∂y
= −

∂vn

∂x
x −

∂u

∂x
y − vn (B.10)

= −
∂vn+1

∂x
(B.11)(b) Any omplex funtion f(z) whih has a Taylor expansion around z0 ∈ C with a�nite radius of onvergene in the omplex plane is analyti in z0.

f(z) =

∞∑

n=0

1

n!
f (n)(z0)(z − z0)

n (B.12)Counter examples:() f(z) = z∗ = x − iy is not analyti for z 6= 0.(d) Funtions with disontinuities:� f(z) = z1/2 is not analyti for y = 0, x ≤ 0.
+

+

z1

z2

z2
1/2

z1
1/2

x

y

branch  cut

Remark:A ontinuous line of analyti points z0 of a funtion f is alled branh ut)of f .� f(z) = |z| =
√

x2 + y2 is not analyti in z = 0.� f(z) = Re t is not analyti for any z ∈ C.� f(z) = f̃(z)θ(y) is not analyti for Im z = 0.



177(e) Funtions with point singularities:
f(z) = (z − z0)

−n, n = 1, 2, 3, . . . (B.13)has pole of order n in z = z0 ∈ C.(f) f(z) =
∑

∞

n=n0
an(z − z0)

n, n0 ∈ Z- has poles of order n0, n0 − 1, . . . ,−1, if n0 < 0.- has essential singularity, if n0 → −∞.2. Contour integralsA ontour in the omplex plane is a ontinuous mapping
C : R −→ C (B.14)

s 7−→ C(s), s ∈ [s1, s2]

s1

s2

C(s)

s parametrizes the line C(s) in the omplex plane. The integral along the ontour C

∫

C

dz f(z) =

∫ s2

s1

ds f(C(s)) (B.15)is alled ontour integral.
s1

s2

ds

f(C(s))Σ

3. Theorem:The losed ontour integral of a funtion f(z) enlosing a region A in C, where f(z)is analyti, is zero.
∮

dz f(z) = 0, f analyti inA (B.16)Proof: f(z) analyti in a region A(a) Consider losed, retangular ontour in A with in�nitesimal extension in y-oordinate:



178 APPENDIX B. THEORY OF COMPLEX FUNCTIONS (ESSENTIALS)

x

y

C
x1+iy x2+iy

idy−idy

x2+i(y+dy)x1+i(y+dy)

∮
dz f(z) =

∫ x2

x1

dx[f(x, y) − f(x, y + dy)︸ ︷︷ ︸
(∗)

] (B.17)
+idy[f(x2, y) − f(x1, y)]

=

∫ x2

x1

dx

[
∂v(x, y)

∂x
dy − i

∂u(x, y)

∂x
dy

] (B.18)
+dy(−v(x2, y) + v(x1, y))

+idy(u(x2, y) − u(x1, y))

= 0 (B.19)
(∗) f(x, y + dy) = f(x, y) +

∂f(x, y)

∂y
dy (B.20)

= f(x, y) +

[
∂u

∂y
+ i

∂v

∂y

]
dy (B.21)(b) Sine f is analyti in A, any ontour A an be omposed of in�nitesimal ontoursonsidered in (a).4. Cauhy theorem:

f(z) =
a−1

z − z0
+

∞∑

n=0

an(z − z0)
n (B.22)

f is a omplex funtion with a pole of �rst order in z, and analyti everywhere else. Cis an arbitrary ontour enirling z0 ounter lokwise.Then:
∮

C dz f(z) = 2πia−1 Cauhy theorem (Residue theorem) (B.23)The oe�ient a−1 of the �rst order pole is alled residue of f in z0.Proof:
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z0

y
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C y

x

z0

z−z0
C
~

ϕ

z0

Pole

C

Aording to 4., the ontour C an be deformed to a irle C̃, without hanging the∮
dz f(z), suh that z ∈ C̃ di�ers from z0 only by an in�nitesimal number ε.

|z − z0| = ε on ontour C̃ (B.24)
∮

C

dz f(z) =

∮

eC

dz

∑
∞

n=−1 an(z − z0)
n+1

z − z0
(B.25)

(∗)
= i

∫ 2π

0

dϕ

(
∞∑

n=−1

an (z − z0)
n+1

︸ ︷︷ ︸
reiϕ=r(cos ϕ+i sin ϕ)

) (B.26)
= 2πian (B.27)

(∗) parametrization of the irular ontour C̃, (B.28)
dz = i(z − z0)dϕ

z = z0 + |z − z0|e
iϕ (B.29)

|z − z0| = ε = onst. on C̃ (B.30)Remark:For f(z) = a
z−z0

the ontour integral along a irle entered around z0 is independent ofthe radius of the irle.Corollary:
∮

C

dz
b

(z − z0)k
= 0 for k = 2, 3, 4, . . . , b ∈ C onst. (B.31)



180 APPENDIX B. THEORY OF COMPLEX FUNCTIONS (ESSENTIALS)Proof:Parametrization:
z − z0 = reiϕ (B.32)

dz = ireiϕdϕ (B.33)
= i(z − z0)dϕ (B.34)

∮

C

dz
b

(z − z0)k
=

∫ 2π

0

dϕ
ib

reiϕ
(B.35)

=
ib

r

∫ 2π

0

dϕ e−iϕ
︸︷︷︸

cos ϕ(−i) sin ϕ

(B.36)
= 0 (B.37)Independent of r > 0!5. Treatment of poles on the integration ontour

The integral along a ontour ontaining a pole is a priory not well-de�ned. Suh anintegral must be treated as the limit of a well-de�ned ontour integral, where the pole is"shifted" away from the ontour by an in�nitesimal amount. The manner, in whih thepole is shifted, is usually imposed by the physial boundary onditions.Example: Pole on the real axis
Gk(z) =

1

z − εk
= f(z) (B.38)The integral

∫ +∞

−∞

dω

2π

1

ω − εk
(B.39)



181is interpreted as the t → 0 limit of a Fourier transform of Gk(z):
Gk(t) =

∫ +∞

−∞

dω

2π

1

ω − εk
(B.40)

We want to use ontour integration so we need a losed ontour.Evaluation of Gk(t) using ontour integration:1. t > 0 :

∫

C

dz

2π

e−izt

z − εk
=

∫
−π

0

dϕ

2π

iz exp (−ir(cos ϕ + i sin ϕ)t)

z − εk

∣∣∣∣
r→∞

= 0, (B.41)where C is the ontour of the lower omplex half plane and
z = reiϕ, r → ∞, −π < ϕ < 0 (ϕ 6= 0, π), (B.42)sine the real part of the exponent, rt sin ϕ, is−∞ for any ϕ ∈]−π, 0[, r → ∞, t > 0.[Order of limits ϕ → −π, 0, r → ∞ is essential: r → ∞ �rst.℄2. t < 0 :
∫

r→∞

dz

2π

e−izt

z − εk
=

∫ π

0

dϕ

2π

iz exp (−ir(cosϕ + i sinϕ)t)

z − εk

∣∣∣∣
r→∞

= 0, (B.43)sine Re (rt sin ϕ) → −∞ for any ϕ ∈]0, π[, t < 0, r → ∞.
⇒ t > 0 : (B.44)

Gk(t) =

∮

Clower half plane dz

2π

e−izt

z − εk
(B.45)

t < 0 : (B.46)
Gk(t) =

∫

Cupper half plane dz

2π

e−izt

z − εk
(B.47)From Cauhy's theorem, these integrals are given by the residues of the pole(s)inside the ontour. In partiular, ∮ dz . . . = 0, if there is no pole inside.To obtain a t-dependent Gk(t) with Gk(t < 0) = 0 (retarded G-funtion), shiftpole at z = εk outside of the upper omplex half plane, i.e. de�ne:

GR
k (t) =

∫ +∞

−∞

dω

2π

e−iωt

ω − εk + iη
(B.48)

=

{
−i exp (−iεkt) , t > 0

0, t < 0
(B.49)

GA
k (t) =

∫ +∞

−∞

dω

2π

e−iωt

ω − εk − iη
(B.50)

=

{
0, t > 0

−i exp (−iεkt) , t < 0
(B.51)
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Conversely, the Fourier transform of the retarded and advaned Green's funtionsfrom t to ω spae are de�ned suh that the t-integral onverges for t > 0 or t < 0,respetively:

GR
k (ω) =

∫
∞

0

dt (−i)e−iεkt ei(ω+iη)t
︸ ︷︷ ︸onvergene fator =

1

ω − εk + iη
(B.52)

GA
k (ω) =

∫ 0

−∞

dt ie−iεktei(ω−iη)t =
1

ω − εk − iη
(B.53)6. Kramers-Kroenig relationLet GR(z) be an analyti funtion in the upper omplex half plane (e.g. GR(z) is retardedGreen's funtion: no pole in upper half plane ⇒ GR(t) = 0 for t < 0.).

GR(z) has the integral representation:
GR(z) = −

∫ +∞

−∞

dε
π

A(ε)
z−ε+iη

(B.54)where A(ε) = ImGR(ε) ∈ R.Proof:1. GR(z) de�ned by (A.54) is analyti for z > 0, sine, by onstrution, it has nopole in the upper half plane (A(ε) is real funtion).2. From (A.54) we have for ω ∈ R:ImGR(ω) = −

∫ +∞

−∞

dε

π

−η

(ω − ε)2 + η2

∣∣∣∣
η→0︸ ︷︷ ︸

=−πδ(ω−ε)

A(ε) = A(ω) (B.55)The funtion A(ε) ∈ R, ε ∈ R determines the imaginary part of GR on the realaxis as ImGR(ω) = u(x, y = 0) = A(ω).3. Sine ImGR(ω) uniquely determines GR(z) in the omplete domain of analytiityvia the di�erential equations, and sine (A.54) is analyti in upper half plane,(A.54) determines the omplete GR(z), and in partiular, the real part on the realaxis: ReGR(ω) = −Re ∫ +∞

∞

dε

π

ImGR(ε)

ω − ε + iη
(B.56)ReGR(ω) = −P

∫
dε
π

ImGR(ε)
ω−ε (B.57)



183This is the Kramers-Kroenig relation. (A.54) is alled analyti ontinuation.
P

∫ +∞

−∞

dε

π

A(ε)

ω − ε
= lim

η→0+

∫ +∞

−∞

dε

π
Re ( 1

ω − ε + iη

)
A(ε) (B.58)

= lim
η→0+

∫ +∞

−∞

dε

π

ω − ε

(ω − ε)2 + η2
A(ε) (B.59)

= lim
η→0+

[∫ ω−η

−∞

dε

π
+

∫ +∞

ω+η

dε

π

]
A(ε)

ω − ε
(B.60)


