String Theory Winter Term 2008/2009

Problem Sheet 2 Discussion: October 29, 14:00 in Hörsaal 118, AVZ

1. Energy-momentum tensor

The action for a field theory is given by the integral of the Lagrangean, $S = \int d^4x \sqrt{-g} \mathscr{L}$. For a real scalar field the action is

$$S_{\phi} = \int \mathrm{d}^4 x \, \sqrt{-g} \left(-\frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 \right) \,,$$

while for an electromagnetic field with field A_{μ} with field strength $F_{\mu\nu}$ it is

$$S_{\rm em} = \int \mathrm{d}^4 x \, \sqrt{-g} \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right) \, .$$

(a) Calculate the energy-momentum tensors using the "general relativity prescription"

$$T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu\nu}}$$

(b) For a flat spacetime, i.e. $g_{\mu\nu} = \eta_{\mu\nu}$, the action is invariant under infinitesimal translations $x^{\mu} \rightarrow x^{\mu} + a^{\mu}$. This symetry entails a conserved Noether current (the "canonical" energy-momentum tensor),

$$T_{\mu\nu}^{\rm can} = -\eta_{\mu\rho} \frac{\partial \mathscr{L}}{\partial (\partial_{\rho}\phi)} \partial_{\nu}\phi + \eta_{\mu\nu} \mathscr{L}.$$

Determine this tensor for both actions! Show that

- i. $T_{\mu\nu}$ and $T_{\mu\nu}^{can}$ coincide for the scalar field, but
- ii. they don't for the electromagnetic field. Show that the mismatch is a totla derivative, i.e. that $T_{\mu\nu} = T_{\mu\nu}^{\text{kan}} + \partial_{\rho} (\dots)_{\mu\nu}^{\rho}$.
- 2. Consider a field theory with some fields ϕ_i coupled to a metric $g_{\mu\nu}$. Let the action $S[g_{\mu\nu}, \phi_i]$ be invariant under arbitrary rescalings of the metric, $g_{\mu\nu} \to \lambda^2(x) g_{\mu\nu}$, where $\lambda \neq 0$. The fields ϕ_i may transform in an arbitrary way under this rescaling.

Show that the energy-momentum tensor

$$T_{\mu\nu} = \frac{2}{\sqrt{g}} \frac{\delta}{\delta g^{\mu\nu}} S[g_{\mu\nu}, \phi_i]$$

is traceless!

3. Show that the induced metric on the worldvolume of any p-brane is

$$G_{ab} = \partial_a x^\mu \partial_b x^\nu g_{\mu\nu} \,,$$

where $g_{\mu\nu}$ is the spacetime metric and the worldvolume is parametrised by some coordinates σ^a , $a = 0, \ldots, p!$

- 4. Check that the Nambu–Goto and Polyakov actions are invariant under reparametrisations $\sigma^a \to \sigma^{a'}(\sigma)!$
- 5. Show that in two dimensions, the Riemann tensor is completely determined by the Ricci scalar (by using the symmetries of the Riemann tensor)! Derive the explicit relation!